Do you want to publish a course? Click here

ODT FLOW: A Scalable Platform for Extracting, Analyzing, and Sharing Multi-source Multi-scale Human Mobility

365   0   0.0 ( 0 )
 Added by Zhenlong Li Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics.



rate research

Read More

Understanding human mobility dynamics among places provides fundamental knowledge regarding their interactive gravity, benefiting a wide range of applications in need of prior knowledge in human spatial interactions. The ongoing COVID-19 pandemic uniquely highlights the need for monitoring and measuring fine-scale human spatial interactions. In response to the soaring needs of human mobility data under the pandemic, we developed an interactive geospatial web portal by extracting worldwide daily population flows from billions of geotagged tweets and United States (U.S.) population flows from SafeGraph mobility data. The web portal is named ODT (Origin-Destination-Time) Flow Explorer. At the core of the explorer is an ODT data cube coupled with a big data computing cluster to efficiently manage, query, and aggregate billions of OD flows at different spatial and temporal scales. Although the explorer is still in its early developing stage, the rapidly generated mobility flow data can benefit a wide range of domains that need timely access to the fine-grained human mobility records. The ODT Flow Explorer can be accessed via http://gis.cas.sc.edu/GeoAnalytics/od.html.
The recent availability of digital traces generated by phone calls and online logins has significantly increased the scientific understanding of human mobility. Until now, however, limited data resolution and coverage have hindered a coherent description of human displacements across different spatial and temporal scales. Here, we characterise mobility behaviour across several orders of magnitude by analysing ~850 individuals digital traces sampled every ~16 seconds for 25 months with ~10 meters spatial resolution. We show that the distributions of distances and waiting times between consecutive locations are best described by log-normal distributions and that natural time-scales emerge from the regularity of human mobility. We point out that log-normal distributions also characterise the patterns of discovery of new places, implying that they are not a simple consequence of the routine of modern life.
Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing (HPC) techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems (SWfMS) and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process.
Deep learning (DL), a form of machine learning, is becoming increasingly popular in several application domains. As a result, cloud-based Deep Learning as a Service (DLaaS) platforms have become an essential infrastructure in many organizations. These systems accept, schedule, manage and execute DL training jobs at scale. This paper explores dependability in the context of a DLaaS platform used in IBM. We begin by explaining how DL training workloads are different, and what features ensure dependability in this context. We then describe the architecture, design and implementation of a cloud-based orchestration system for DL training. We show how this system has been architected with dependability in mind while also being horizontally scalable, elastic, flexible and efficient. We also present an initial empirical evaluation of the overheads introduced by our platform, and discuss tradeoffs between efficiency and dependability.
Robust motion planning is a well-studied problem in the robotics literature, yet current algorithms struggle to operate scalably and safely in the presence of other moving agents, such as humans. This paper introduces a novel framework for robot navigation that accounts for high-order system dynamics and maintains safety in the presence of external disturbances, other robots, and non-deterministic intentional agents. Our approach precomputes a tracking error margin for each robot, generates confidence-aware human motion predictions, and coordinates multiple robots with a sequential priority ordering, effectively enabling scalable safe trajectory planning and execution. We demonstrate our approach in hardware with two robots and two humans. We also showcase our works scalability in a larger simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا