Do you want to publish a course? Click here

Trace-Relating Compiler Correctness and Secure Compilation

76   0   0.0 ( 0 )
 Added by Catalin Hritcu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Compiler correctness is, in its simplest form, defined as the inclusion of the set of traces of the compiled program into the set of traces of the original program, which is equivalent to the preservation of all trace properties. Here traces collect, for instance, the externally observable events of each execution. This definition requires, however, the set of traces of the source and target languages to be exactly the same, which is not the case when the languages are far apart or when observations are fine-grained. To overcome this issue, we study a generalized compiler correctness definition, which uses source and target traces drawn from potentially different sets and connected by an arbitrary relation. We set out to understand what guarantees this generalized compiler correctness definition gives us when instantiated with a non-trivial relation on traces. When this trace relation is not equality, it is no longer possible to preserve the trace properties of the source program unchanged. Instead, we provide a generic characterization of the target trace property ensured by correctly compiling a program that satisfies a given source property, and dually, of the source trace property one is required to show in order to obtain a certain target property for the compiled code. We show that this view on compiler correctness can naturally account for undefined behavior, resource exhaustion, different source and target values, side-channels, and various abstraction mismatches. Finally, we show that the same generalization also applies to many secure compilation definitions, which characterize the protection of a compiled program against linked adversarial code.



rate research

Read More

79 - Robert Sison 2020
Proving only over source code that programs do not leak sensitive data leaves a gap between reasoning and reality that can only be filled by accounting for the behaviour of the compiler. Furthermore, software does not always have the luxury of limiting itself to single-threaded computation with resources statically dedicated to each user to ensure the confidentiality of their data. This results in mixed-sensitivity concurrent programs, which might reuse memory shared between their threads to hold data of different sensitivity levels at different times; for such programs, a compiler must preserve the value-dependent coordination of such mixed-sensitivity reuse despite the impact of concurrency. Here we demonstrate, using Isabelle/HOL, that it is feasible to verify that a compiler preserves noninterference, the strictest kind of confidentiality property, for mixed-sensitivity concurrent programs. First, we present notions of refinement that preserve a concurrent value-dependent notion of noninterference that we have designed to support such programs. As proving noninterference-preserving refinement can be considerably more complex than the standard refinements typically used to verify semantics -- preserving compilation, our notions include a decomposition principle that separates the semantics -- from the security-preservation concerns. Second, we demonstrate that these refinement notions are applicable to verified secure compilation, by exercising them on a single-pass compiler for mixed-sensitivity concurrent programs that synchronise using mutex locks, from a generic imperative language to a generic RISC-style assembly language. Finally, we execute our compiler on a nontrivial mixed-sensitivity concurrent program modelling a real-world use case, thus preserving its source-level noninterference properties down to an assembly-level model automatically. (See paper for complete abstract.)
Microarchitectural attacks exploit the abstraction gap between the Instruction Set Architecture (ISA) and how instructions are actually executed by processors to compromise the confidentiality and integrity of a system. To secure systems against microarchitectural attacks, programmers need to reason about and program against these microarchitectural side-effects. However, we cannot -- and should not -- expect programmers to manually tailor programs for specific processors and their security guarantees. Instead, we could rely on compilers (and the secure compilation community), as they can play a prominent role in bridging this gap: compilers should target specific processors microarchitectural security guarantees and they should leverage these guarantees to produce secure code. To achieve this, we outline the idea of Contract-Aware Secure COmpilation (CASCO) where compilers are parametric with respect to a hardware/software security-contract, an abstraction capturing a processors security guarantees. That is, compilers will automatically leverage the guarantees formalized in the contract to ensure that program-level security properties are preserved at microarchitectural level.
105 - Kasper Dokter 2015
Coordination languages simplify design and development of concurrent systems. Particularly, exogenous coordination languages, like BIP and Reo, enable system designers to express the interactions among components in a system explicitly. In this paper we establish a formal relation between BI(P) (i.e., BIP without the priority layer) and Reo, by defining transformations between their semantic models. We show that these transformations preserve all properties expressible in a common semantics. This formal relation comprises the basis for a solid comparison and consolidation of the fundamental coordination concepts behind these two languages. Moreover, this basis offers translations that enable users of either language to benefit from the toolchains of the other.
The secure hash function SHA-256 is a function on bit strings. This means that its restriction to the bit strings of any given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. We describe such instruction sequences for the restrictions to bit strings of the different possible lengths by means of uniform terms from an algebraic theory.
Just-in-time (JIT) compilers are used by many modern programming systems in order to improve performance. Bugs in JIT compilers provide exploitable security vulnerabilities and debugging them is difficult as they are large, complex, and dynamic. Current debugging and visualization tools deal with static code and are not suitable in this domain. We describe a new approach for simplifying the large and complex intermediate representation, generated by a JIT compiler and visualize it with a metro map metaphor to aid developers in debugging.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا