No Arabic abstract
We use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image individual vortices in amorphous superconducting MoSi thin films. Spatially resolved measurements of the magnetic field generated by both vortices and Meissner screening satisfy the Pearl model for vortices in thin films and yield values for the Pearl length and bulk penetration depth at 4.2 K. Flux pinning is observed and quantified through measurements of vortex motion driven by both applied currents and thermal activation. The effects of pinning are also observed in metastable vortex configurations, which form as the applied magnetic field is reduced and magnetic flux is expelled from the film. Understanding and controlling vortex dynamics in amorphous thin films is crucial for optimizing devices such as superconducting nanowire single photon detectors (SNSPDs), the most efficient of which are made from MoSi, WSi, and MoGe.
Vortex dynamics in superconductors have received a great deal of attention from both fundamental and applied researchers over the past few decades. Because of its critical role in the energy relaxation process of type-II superconductors, vortex dynamics have been deemed a key contributor to the response rate of the emerging superconducting single photon detector (SSPD). With the support of electrical transport measurements under external magnetic fields, vortex dynamics in superconducting a-MoSi thin films are investigated in this work. It is ascertained that the vortex state changes from pinned to flux flow under the influence of the Lorentz force. The critical vortex velocity v* and quasi-particle inelastic scattering time {tau}* under different magnetic fields are derived from the Larkin-Ovchinnikov model. Under high magnetic fields, the v* power law dependence (v*~B-1/2) collapses, i.e., v* tends to zero, which is attributed to the obstruction of flux flow by the intrinsic defects, while the {tau}* increases with the increasing magnetic field strength. In addition, the degree of vortex rearrangement is found to be enhanced by photon-induced reduction in potential barrier, which mitigates the adverse effect of film inhomogeneity on superconductivity in the a-MoSi thin films. The thorough understanding of the vortex dynamics in a-MoSi thin films under the effect of external stimuli is of paramount importance for both further fundamental research in this area and optimization of SSPD design.
We report on the direct observation of vortex states confined in equilateral and isosceles triangular dots of weak pinning amorphous superconducting thin films with a scanning superconducting quantum interference device microscope. The observed images illustrate not only pieces of a triangular vortex lattice as commensurate vortex states, but also incommensurate vortex states including metastable ones. We comparatively analyze vortex configurations found in different sample geometries and discuss the symmetry and stability of commensurate and incommensurate vortex configurations against deformations of the sample shape.
Vortices in superconductors driven at microwave frequencies exhibit a response related to the interplay between the vortex viscosity, pinning strength, and flux creep effects. At the same time, the trapping of vortices in superconducting microwave resonant circuits contributes excess loss and can result in substantial reductions in the quality factor. Thus, understanding the microwave vortex response in superconducting thin films is important for the design of such circuits, including superconducting qubits and photon detectors, which are typically operated in small, but non-zero, magnetic fields. By cooling in fields of the order of 100 $mu$T and below, we have characterized the magnetic field and frequency dependence of the microwave response of a small density of vortices in resonators fabricated from thin films of Re and Al, which are common materials used in superconducting microwave circuits. Above a certain threshold cooling field, which is different for the Re and Al films, vortices become trapped in the resonators. Vortices in the Al resonators contribute greater loss and are influenced more strongly by flux creep effects than in the Re resonators. This different behavior can be described in the framework of a general vortex dynamics model.
The precondition for the BKT transition in thin superconducting films, the logarithmic intervortex interaction, is satisfied at distances short relative to $Lambda=2lambda^2/d$, $lambda$ is the London penetration depth of the bulk material and $d$ is the film thickness. For this reason, the search for the transition has been conducted in samples of the size $L<Lambda$. It is argued below that film edges turn the interaction into near exponential (short-range) thus making the BKT transition impossible. If however the substrate is superconducting and separated from the film by an insulated layer, the logarithmic intervortex interaction is recovered and the BKT transition should be observable.
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc.