No Arabic abstract
Explicitly computed Penrose diagrams are plotted for a classical model of black hole formation and evaporation, in which black holes form by the accretion of infalling spherical shells of matter and subsequently evaporate by emitting spherical shells of Hawking radiation. This model is based on known semiclassical effects, but is not a full solution of semiclassical gravity. The method allows arbitrary interior metrics of the form $ds^2=-f(r),dt^2+f(r)^{-1},dr^2+r^2,dOmega^2$, including singular and nonsingular models. Matter dynamics are visualized by explicitly plotting proper density in the diagrams, as well as by tracking the location of trapped surfaces and energy condition violations. The most illustrative model accurately approximates the standard time evolution for black hole thermal evaporation; its time dependence and causal structure are analyzed by inspection of the diagram. The resulting insights contradict some common intuitions and assumptions, and we point out some examples in the literature with assumptions that do not hold up in this more detailed model. Based on the new diagrams, we argue for an improved understanding of the Hawking radiation process, propose an alternate definition of black hole in the presence of evaporation, and suggest some implications regarding information preservation and unitarity.
An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkowski space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into hard particles and soft particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the $S$-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.
A universal geometric inequality for bodies relating energy, size, angular momentum, and charge is naturally implied by Bekensteins entropy bounds. We establi
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compute the greybody factors for gravitons, photons, and conformal-coupling massless scalar particles by using the analytic solutions of the Teukolsky equation in the Kerr-de Sitter background. It turns out that the cosmological constant quenches the amplification factor and it approaches to zero towards the critical point where the Nariai and extremal limits merge together. We confirm that even near the critical point, the superradiance of gravitons is more significant than that of photons and scalar particles. Angular momentum is carried out by particles several times faster than mass energy decreases. This means that a Kerr-de Sitter black hole rapidly spins down to a nearly Schwarzschild-de Sitter black hole before it completely evaporates. We also compute the time evolution of the Bekenstein-Hawking entropy. The total entropy of the Kerr-de Sitter black hole and cosmological horizon increases with time, which is consistent with the generalized second law of thermodynamics.
We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To that end we resort to Kiselevs solution as the impact such modifications have on the evaporation rate of the black hole becomes more clear. As an application, we study the case for which the thermal dimension is reduced to two.
The Penrose process of an extremal braneworld black hole is studied. We analyze the Penrose process by two massive spinning particles collide near the horizon. By calculating the maximum energy extraction efficiency of this process, it turns out that the maximal efficiency increases as the tilde charge parameter $d$ of the braneworld blackhole decreases. Interestingly, for the negative value of $d$, the efficiency can be even larger than the Kerr case.