Do you want to publish a course? Click here

Collisional Penrose process with spinning particles in braneworld black hole

100   0   0.0 ( 0 )
 Added by Xiangdong Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Penrose process of an extremal braneworld black hole is studied. We analyze the Penrose process by two massive spinning particles collide near the horizon. By calculating the maximum energy extraction efficiency of this process, it turns out that the maximal efficiency increases as the tilde charge parameter $d$ of the braneworld blackhole decreases. Interestingly, for the negative value of $d$, the efficiency can be even larger than the Kerr case.



rate research

Read More

Energy extraction from a rotating or charged black hole is one of fascinating issues in general relativity. The collisional Penrose process is one of such extraction mechanisms and has been reconsidered intensively since Banados, Silk and West pointed out the physical importance of very high energy collisions around a maximally rotating black hole. In order to get results analytically, the test particle approximation has been adopted so far. Successive works based on this approximation scheme have not yet revealed the upper bound on the efficiency of the energy extraction because of lack of the back reaction. In the Reissner-Nordstrom spacetime, by fully taking into account the self-gravity of the shells, we find that there is an upper bound on the extracted energy, which is consistent with the area law of a black hole. We also show one particular scenario in which the almost maximum energy extraction is achieved even without the Banados-Silk-West collision.
We study the innermost stable circular orbit (ISCO) of a spinning test particle moving in the vicinity of an axially symmetric rotating braneworld black hole (BH). We start with the description of the event horizon, static limit surface and ergosphere region of such BH and bring out the effect of tidal charge parameter on ergosphere. It is found that the ISCO of rotating braneworld BH is very sensitive to braneworld BH parameter C (also known as tidal charge parameter) in addition to its rotation parameter. We further discovered that the orbital radius of the spinning test particles changes non monotonously with the braneworld BH tidal charge parameter. It is found that for rotating braneworld BH the allowed range of the particle spin grows as the tidal charge parameter C decreases, in contrast with the Kerr Newman BH. We also found the similar behavior of the particles spin for the braneworld Reissner Nordstrom (C < 0) BH in contrast with its counterpart having (C > 0).
We show that kinematics of charged particles allows us to model the growth of particles energy by consecutive particle-splits, once a spherical mirror as a perfectly reflective boundary is placed outside a charged black hole. We consider a charged version of the Penrose process, in which a charged particle decays into two fragments, one of them has negative energy and the other has positive energy that is larger than that of the parent particle. The confinement system with the mirror makes the particles energy amplified each time a split of the parent particle occurs. Thus, the energy is a monotonically increasing function of time. However, the energy does not increase unboundedly, but rather asymptotes to a certain finite value, implying no instability of the system in this respect.
We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high center-of-mass energy, which occurs if either of the colliding particles has its angular momentum fine-tuned to the critical value to enter the horizon. We show that if the fine-tuned particle is ingoing on the collision, the upper limit of the efficiency is $(2+sqrt{3})(2-sqrt{2})simeq 2.186$, while if the fine-tuned particle is bounced back before the collision, the upper limit is $(2+sqrt{3})^{2}simeq 13.93$. Despite earlier claims, the former can be attained for inverse Compton scattering if the fine-tuned particle is massive and starts at rest at infinity, while the latter can be attained for various particle reactions, such as inverse Compton scattering and pair annihilation, if the fine-tuned particle is either massless or highly relativistic at infinity. We discuss the difference between the present and earlier analyses.
Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black holes event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا