No Arabic abstract
Recent realisation of three-dimensional optical lattice clocks circumvents short range collisional clock shifts which have been the bottle neck towards higher precision; the long range electronic dipole-dipole interaction between the atoms becomes the primary source of clock shift due to interatomic interactions. We study the Rabi spectroscopy of three-dimensional optical lattice clocks with unity filling. From the Lindblad equation governing the time evolution of the density matrix of the atoms, we derive the Bloch equations in the presence of the external Rabi driving laser field, and solve the equations approximately to the first order of the coupling strength of the dipole-dipole interaction between the atoms. We find that the clock shift equals to the product of the coupling strength, a factor determined by the parameters of the Rabi pulse, and another factor depending on the configuration of the three-dimensional optical lattice. Our result on the clock shift within the Rabi spectroscopy can be checked by measurement in future experiment.
We analyze both the s- and p-wave collision induced frequency shifts and propose a over-$pi$ pulse scheme to cancel the shifts in optical lattice clocks interrogated by a Rabi pulse. The collisional frequency shifts are analytically solved as a function of the pulse area and the inhomogeneity of the Rabi frequencies. Experimentally measured collisional frequency shifts in an Yb optical lattice clock are in good agreement with the analytical calculations. Based on our analysis, the over-$pi$ pulse combined with a small inhomogeneity below 0.1 allows a fractional uncertainty on a level of $10^{-18}$ in both Sr and Yb optical lattice clocks by canceling the collisional frequency shift.
Quantised sound waves -- phonons -- govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (e.g., by binding electrons into superconducting Cooper pairs). The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff. Optical-lattice realisations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials. Here, we create an optical lattice with phonon modes using a Bose-Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of an active quantum gas microscope, the multimode cavity QED system both images the phonons and induces the crystallisation that supports phonons via short-range, photon-mediated atom-atom interactions. Dynamical susceptibility measurements reveal the phonon dispersion relation, showing that these collective excitations exhibit a sound speed dependent on the BEC-photon coupling strength. Our results pave the way for exploring the rich physics of elasticity in quantum solids, ranging from quantum melting transitions to exotic fractonic topological defects in the quantum regime.
Phasonic degrees of freedom are unique to quasiperiodic structures, and play a central role in poorly-understood properties of quasicrystals from excitation spectra to wavefunction statistics to electronic transport. However, phasons are challenging to access dynamically in the solid state due to their complex long-range character and the effects of disorder and strain. We report phasonic spectroscopy of a quantum gas in a one-dimensional quasicrystalline optical lattice. We observe that strong phasonic driving produces a nonperturbative high-harmonic plateau strikingly different from the effects of standard dipolar driving. Tuning the potential from crystalline to quasicrystalline, we identify spectroscopic signatures of quasiperiodicity and interactions and map the emergence of a multifractal energy spectrum, opening a path to direct imaging of the Hofstadter butterfly.
The recent experimental realization of a three-dimensional (3D) optical lattice clock not only reduces the influence of collisional interactions on the clocks accuracy but also provides a promising platform for studying dipolar many-body quantum physics. Here, by solving the governing master equation, we investigate the role of both elastic and dissipative long-range interactions in the clocks dynamics and study its dependence on lattice spacing, dimensionality, and dipolar orientation. For small lattice spacing, i.e., $k_0all 1$, where $a$ is the lattice constant and $k_0$ is the transition wavenumber, a sizable spin squeezing appears in the transient state which is favored in a head-to-tail dipolar configuration in 1D systems and a side-by-side configuration in 2D systems, respectively. For large lattice spacing, i.e., $k_0agg 1$, the single atomic decay rate can be effectively suppressed due to the destructive dissipative emission of neighboring atoms in both 1D and 2D. Our results will not only aid in the design of the future generation of ultraprecise atomic clocks but also illuminates the rich many-body physics exhibited by radiating dipolar system.
We demonstrate fluorescence microscopy of individual fermionic potassium atoms in a 527-nm-period optical lattice. Using electromagnetically induced transparency (EIT) cooling on the 770.1-nm D$_1$ transition of $^{40}$K, we find that atoms remain at individual sites of a 0.3-mK-deep lattice, with a $1/e$ pinning lifetime of $67(9),rm{s}$, while scattering $sim 10^3$ photons per second. The plane to be imaged is isolated using microwave spectroscopy in a magnetic field gradient, and can be chosen at any depth within the three-dimensional lattice. With a similar protocol, we also demonstrate patterned selection within a single lattice plane. High resolution images are acquired using a microscope objective with 0.8 numerical aperture, from which we determine the occupation of lattice sites in the imaging plane with 94(2)% fidelity per atom. Imaging with single-atom sensitivity and addressing with single-site accuracy are key steps towards the search for unconventional superfluidity of fermions in optical lattices, the initialization and characterization of transport and non-equilibrium dynamics, and the observation of magnetic domains.