Do you want to publish a course? Click here

Generalized substantial fractional operators and well-posedness of Cauchy problem

230   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this work we focus on substantial fractional integral and differential operators which play an important role in modeling anomalous diffusion. We introduce a new generalized substantial fractional integral. Generalizations of fractional substantial derivatives are also introduced both in Riemann-Liouville and Caputo sense. Furthermore, we analyze fundamental properties of these operators. Finally, we consider a class of generalized substantial fractional differential equations and discuss the existence, uniqueness and continuous dependence of solutions on initial data.



rate research

Read More

140 - Ziheng Tu , Xiaojun Lu 2016
This paper mainly investigates the Cauchy problem of the spatially weighted dissipative equation with initial data in the weighted Lebesgue space. A generalized Hankel Transform is introduced to derive the analytical solution and a special Youngs Inequality has been applied to prove the space-time estimates for this type of equation.
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp boundsare obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal version of the extrapolation theorem of Rubio de Francia and characterizations of two-weight norm inequalities.
In this paper we explore the theory of fractional powers of non-negative (and not necessarily self-adjoint) operators and its amazing relationship with the Chebyshev polynomials of the second kind to obtain results of existence, regularity and behavior asymptotic of solutions for linear abstract evolution equations of $n$-th order in time, where $ngeqslant3$. We also prove generalizations of classical results on structural damping for linear systems of differential equations.
The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. These integrations play an important role to setting the subsequent fixed point argument. The existence of solutions for less regular data is discussed, and several examples and applications are presented.
75 - N.D. Cong 2021
We establish partial semigroup property of Riemann-Liouville and Caputo fractional differential operators. Using this result we prove theorems on reduction of multi-term fractional differential systems to single-term and multi-order systems, and prove existence and uniqueness of solution to multi-term Caputo fractional differential systems
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا