Do you want to publish a course? Click here

Convergence Rates for Gaussian Mixtures of Experts

265   0   0.0 ( 0 )
 Added by Nhat Ho
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We provide a theoretical treatment of over-specified Gaussian mixtures of experts with covariate-free gating networks. We establish the convergence rates of the maximum likelihood estimation (MLE) for these models. Our proof technique is based on a novel notion of emph{algebraic independence} of the expert functions. Drawing on optimal transport theory, we establish a connection between the algebraic independence and a certain class of partial differential equations (PDEs). Exploiting this connection allows us to derive convergence rates and minimax lower bounds for parameter estimation.



rate research

Read More

134 - Faicel Chamroukhi 2015
Mixture of Experts (MoE) is a popular framework for modeling heterogeneity in data for regression, classification and clustering. For continuous data which we consider here in the context of regression and cluster analysis, MoE usually use normal experts, that is, expert components following the Gaussian distribution. However, for a set of data containing a group or groups of observations with asymmetric behavior, heavy tails or atypical observations, the use of normal experts may be unsuitable and can unduly affect the fit of the MoE model. In this paper, we introduce new non-normal mixture of experts (NNMoE) which can deal with these issues regarding possibly skewed, heavy-tailed data and with outliers. The proposed models are the skew-normal MoE and the robust $t$ MoE and skew $t$ MoE, respectively named SNMoE, TMoE and STMoE. We develop dedicated expectation-maximization (EM) and expectation conditional maximization (ECM) algorithms to estimate the parameters of the proposed models by monotonically maximizing the observed data log-likelihood. We describe how the presented models can be used in prediction and in model-based clustering of regression data. Numerical experiments carried out on simulated data show the effectiveness and the robustness of the proposed models in terms modeling non-linear regression functions as well as in model-based clustering. Then, to show their usefulness for practical applications, the proposed models are applied to the real-world data of tone perception for musical data analysis, and the one of temperature anomalies for the analysis of climate change data.
We study the Bayesian inverse problem of learning a linear operator on a Hilbert space from its noisy pointwise evaluations on random input data. Our framework assumes that this target operator is self-adjoint and diagonal in a basis shared with the Gaussian prior and noise covariance operators arising from the imposed statistical model and is able to handle target operators that are compact, bounded, or even unbounded. We establish posterior contraction rates with respect to a family of Bochner norms as the number of data tend to infinity and derive related lower bounds on the estimation error. In the large data limit, we also provide asymptotic convergence rates of suitably defined excess risk and generalization gap functionals associated with the posterior mean point estimator. In doing so, we connect the posterior consistency results to nonparametric learning theory. Furthermore, these convergence rates highlight and quantify the difficulty of learning unbounded linear operators in comparison with the learning of bounded or compact ones. Numerical experiments confirm the theory and demonstrate that similar conclusions may be expected in more general problem settings.
Mixtures-of-Experts models and their maximum likelihood estimation (MLE) via the EM algorithm have been thoroughly studied in the statistics and machine learning literature. They are subject of a growing investigation in the context of modeling with high-dimensional predictors with regularized MLE. We examine MoE with Gaussian gating network, for clustering and regression, and propose an $ell_1$-regularized MLE to encourage sparse models and deal with the high-dimensional setting. We develop an EM-Lasso algorithm to perform parameter estimation and utilize a BIC-like criterion to select the model parameters, including the sparsity tuning hyperparameters. Experiments conducted on simulated data show the good performance of the proposed regularized MLE compared to the standard MLE with the EM algorithm.
Distances to compact sets are widely used in the field of Topological Data Analysis for inferring geometric and topological features from point clouds. In this context, the distance to a probability measure (DTM) has been introduced by Chazal et al. (2011) as a robust alternative to the distance a compact set. In practice, the DTM can be estimated by its empirical counterpart, that is the distance to the empirical measure (DTEM). In this paper we give a tight control of the deviation of the DTEM. Our analysis relies on a local analysis of empirical processes. In particular, we show that the rates of convergence of the DTEM directly depends on the regularity at zero of a particular quantile fonction which contains some local information about the geometry of the support. This quantile function is the relevant quantity to describe precisely how difficult is a geometric inference problem. Several numerical experiments illustrate the convergence of the DTEM and also confirm that our bounds are tight.
We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class of generators and discriminators. We prove that the resulting density estimate converges to $p^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(log n/n)^{2beta/(2beta+d)}$ where $n$ is the sample size and $beta$ determines the smoothness of $p^*.$ This is the first result in the literature on density estimation using vanilla GANs with JS rates faster than $n^{-1/2}$ in the regime $beta>d/2.$

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا