No Arabic abstract
21 cm intensity mapping has arisen as a powerful probe of the high-redshift universe, but its potential is limited by extremely bright foregrounds and high source confusion. In this Letter, we propose a new analysis which can help solve both problems. From the combination of an intensity map with an overlapping galaxy survey we construct a new one-point statistic which is unbiased by foregrounds and contains information left out of conventional analyses. We show that our method can measure the HI mass function with unprecedented precision using observations similar to recent 21 cm detections.
Intensity mapping of the HI 21 cm line and the CO 2.61 mm line from the epoch of reionization has emerged as powerful, complementary, probes of the high-redshift Universe. However, both maps and their cross-correlation are dominated by foregrounds. We propose a new analysis by which the signal is unbiased by foregrounds, i.e. it can be measured without foreground mitigation. We construct the antisymmetric part of the HI-CO cross-correlation, arising because the statistical fluctuations of two fields have different evolution in time. We show that the sign of this new signal can distinguish model-independently whether inside-out reionization happens during some interval of time.
We introduce DAYENU, a linear, spectral filter for HI intensity mapping that achieves the desirable foreground mitigation and error minimization properties of inverse co-variance weighting with minimal modeling of the underlying data. Beyond 21 cm power-spectrum estimation, our filter is suitable for any analysis where high dynamic-range removal of spectrally smooth foregrounds in irregularly (or regularly) sampled data is required, something required by many other intensity mapping techniques. Our filtering matrix is diagonalized by Discrete Prolate Spheroidal Sequences which are an optimal basis to model band-limited foregrounds in 21 cm intensity mapping experiments in the sense that they maximally concentrate power within a finite region of Fourier space. We show that DAYENU enables the access of large-scale line-of-sight modes that are inaccessible to tapered DFT estimators. Since these modes have the largest SNRs, DAYENU significantly increases the sensitivity of 21 cm analyses over tapered Fourier transforms. Slight modifications allow us to use DAYENU as a linear replacement for iterative delay CLEANing (DAYENUREST). We refer readers to the Code section at the end of this paper for links to examples and code.
[Abridged] We study the abundance and clustering properties of HI at redshifts $zleqslant5$ using TNG100, a large state-of-the-art magneto-hydrodynamic simulation of a 75 Mpc/h box size. We show that most of the HI lies within dark matter halos and quantify the average HI mass hosted by halos of mass M at redshift z. We find that only halos with circular velocities larger than $simeq$ 30 km/s contain HI. While the density profiles of HI exhibit a large halo-to-halo scatter, the mean profiles are universal across mass and redshift. The HI in low-mass halos is mostly located in the central galaxy, while in massive halos is concentrated in the satellites. We show that the HI and matter density probability distribution functions differ significantly. Our results point out that for small halos the HI bulk velocity goes in the same direction and has the same magnitude as the halo peculiar velocity, while in large halos differences show up. We find that halo HI velocity dispersion follows a power-law with halo mass. We find a complicated HI bias, with HI becoming non-linear already at $k=0.3$ h/Mpc at $zgtrsim3$. Our simulation reproduces the DLAs bias value from observations. We find that the clustering of HI can be accurately reproduced by perturbative methods. We identify a new secondary bias, by showing that the clustering of halos depends not only on mass but also on HI content. We compute the amplitude of the HI shot-noise and find that it is small at all redshifts. We study the clustering of HI in redshift-space, and show that linear theory can explain the ratio between the monopoles in redshift- and real-space down to small scales at high redshift. We find that the amplitude of the Fingers-of-God effect is larger for HI than for matter. We point out that accurate 21 cm maps can be created from N-body or approximate simulations rather than full hydrodynamic simulations.
Current and future generations of intensity mapping surveys promise dramatic improvements in our understanding of galaxy evolution and large-scale structure. An intensity map provides a census of the cumulative emission from all galaxies in a given region and redshift, including faint objects that are undetectable individually. Furthermore, cross-correlations between line intensity maps and galaxy redshift surveys are sensitive to the line intensity and clustering bias without the limitation of cosmic variance. Using the Fisher information matrix, we derive simple expressions describing sensitivities to the intensity and bias obtainable for cross-correlation surveys, focusing on cosmic variance evasion. Based on these expressions, we conclude that the optimal sensitivity is obtained by matching the survey depth, defined by the ratio of the clustering power spectrum to noise in a given mode, between the two surveys. We find that mid- to far-infrared space telescopes could benefit from this technique by cross-correlating with coming galaxy redshift surveys such as those planned for the Nancy Grace Roman Space Telescope, allowing for sensitivities beyond the cosmic variance limit. Our techniques can therefore be applied to survey design and requirements development to maximize the sensitivities of future intensity mapping experiments to tracers of galaxy evolution and large-scale structure cosmology.
Following the first two annual intensity mapping workshops at Stanford in March 2016 and Johns Hopkins in June 2017, we report on the recent advances in theory, instrumentation and observation that were presented in these meetings and some of the opportunities and challenges that were identified looking forward. With preliminary detections of CO, [CII], Lya and low-redshift 21cm, and a host of experiments set to go online in the next few years, the field is rapidly progressing on all fronts, with great anticipation for a flood of new exciting results. This current snapshot provides an efficient reference for experts in related fields and a useful resource for nonspecialists. We begin by introducing the concept of line-intensity mapping and then discuss the broad array of science goals that will be enabled, ranging from the history of star formation, reionization and galaxy evolution to measuring baryon acoustic oscillations at high redshift and constraining theories of dark matter, modified gravity and dark energy. After reviewing the first detections reported to date, we survey the experimental landscape, presenting the parameters and capabilities of relevant instruments such as COMAP, mmIMe, AIM-CO, CCAT-p, TIME, CONCERTO, CHIME, HIRAX, HERA, STARFIRE, MeerKAT/SKA and SPHEREx. Finally, we describe recent theoretical advances: different approaches to modeling line luminosity functions, several techniques to separate the desired signal from foregrounds, statistical methods to analyze the data, and frameworks to generate realistic intensity map simulations.