No Arabic abstract
We introduce the Neural State Machine, seeking to bridge the gap between the neural and symbolic views of AI and integrate their complementary strengths for the task of visual reasoning. Given an image, we first predict a probabilistic graph that represents its underlying semantics and serves as a structured world model. Then, we perform sequential reasoning over the graph, iteratively traversing its nodes to answer a given question or draw a new inference. In contrast to most neural architectures that are designed to closely interact with the raw sensory data, our model operates instead in an abstract latent space, by transforming both the visual and linguistic modalities into semantic concept-based representations, thereby achieving enhanced transparency and modularity. We evaluate our model on VQA-CP and GQA, two recent VQA datasets that involve compositionality, multi-step inference and diverse reasoning skills, achieving state-of-the-art results in both cases. We provide further experiments that illustrate the models strong generalization capacity across multiple dimensions, including novel compositions of concepts, changes in the answer distribution, and unseen linguistic structures, demonstrating the qualities and efficacy of our approach.
Recurrent neural networks (RNNs) are widely used as a memory model for sequence-related problems. Many variants of RNN have been proposed to solve the gradient problems of training RNNs and process long sequences. Although some classical models have been proposed, capturing long-term dependence while responding to short-term changes remains a challenge. To this problem, we propose a new model named Dual Recurrent Neural Networks (DuRNN). The DuRNN consists of two parts to learn the short-term dependence and progressively learn the long-term dependence. The first part is a recurrent neural network with constrained full recurrent connections to deal with short-term dependence in sequence and generate short-term memory. Another part is a recurrent neural network with independent recurrent connections which helps to learn long-term dependence and generate long-term memory. A selection mechanism is added between two parts to help the needed long-term information transfer to the independent neurons. Multiple modules can be stacked to form a multi-layer model for better performance. Our contributions are: 1) a new recurrent model developed based on the divide-and-conquer strategy to learn long and short-term dependence separately, and 2) a selection mechanism to enhance the separating and learning of different temporal scales of dependence. Both theoretical analysis and extensive experiments are conducted to validate the performance of our model, and we also conduct simple visualization experiments and ablation analyses for the model interpretability. Experimental results indicate that the proposed DuRNN model can handle not only very long sequences (over 5000 time steps), but also short sequences very well. Compared with many state-of-the-art RNN models, our model has demonstrated efficient and better performance.
A machine intelligence pipeline usually consists of six components: problem, representation, model, loss, optimizer and metric. Researchers have worked hard trying to automate many components of the pipeline. However, one key component of the pipeline--problem definition--is still left mostly unexplored in terms of automation. Usually, it requires extensive efforts from domain experts to identify, define and formulate important problems in an area. However, automatically discovering research or application problems for an area is beneficial since it helps to identify valid and potentially important problems hidden in data that are unknown to domain experts, expand the scope of tasks that we can do in an area, and even inspire completely new findings. This paper describes Problem Learning, which aims at learning to discover and define valid and ethical problems from data or from the machines interaction with the environment. We formalize problem learning as the identification of valid and ethical problems in a problem space and introduce several possible approaches to problem learning. In a broader sense, problem learning is an approach towards the free will of intelligent machines. Currently, machines are still limited to solving the problems defined by humans, without the ability or flexibility to freely explore various possible problems that are even unknown to humans. Though many machine learning techniques have been developed and integrated into intelligent systems, they still focus on the means rather than the purpose in that machines are still solving human defined problems. However, proposing good problems is sometimes even more important than solving problems, because a good problem can help to inspire new ideas and gain deeper understandings. The paper also discusses the ethical implications of problem learning under the background of Responsible AI.
We present a modular approach for learning policies for navigation over long planning horizons from language input. Our hierarchical policy operates at multiple timescales, where the higher-level master policy proposes subgoals to be executed by specialized sub-policies. Our choice of subgoals is compositional and semantic, i.e. they can be sequentially combined in arbitrary orderings, and assume human-interpretable descriptions (e.g. exit room, find kitchen, find refrigerator, etc.). We use imitation learning to warm-start policies at each level of the hierarchy, dramatically increasing sample efficiency, followed by reinforcement learning. Independent reinforcement learning at each level of hierarchy enables sub-policies to adapt to consequences of their actions and recover from errors. Subsequent joint hierarchical training enables the master policy to adapt to the sub-policies. On the challenging EQA (Das et al., 2018) benchmark in House3D (Wu et al., 2018), requiring navigating diverse realistic indoor environments, our approach outperforms prior work by a significant margin, both in terms of navigation and question answering.
Learning target side syntactic structure has been shown to improve Neural Machine Translation (NMT). However, incorporating syntax through latent variables introduces additional complexity in inference, as the models need to marginalize over the latent syntactic structures. To avoid this, models often resort to greedy search which only allows them to explore a limited portion of the latent space. In this work, we introduce a new latent variable model, LaSyn, that captures the co-dependence between syntax and semantics, while allowing for effective and efficient inference over the latent space. LaSyn decouples direct dependence between successive latent variables, which allows its decoder to exhaustively search through the latent syntactic choices, while keeping decoding speed proportional to the size of the latent variable vocabulary. We implement LaSyn by modifying a transformer-based NMT system and design a neural expectation maximization algorithm that we regularize with part-of-speech information as the latent sequences. Evaluations on four different MT tasks show that incorporating target side syntax with LaSyn improves both translation quality, and also provides an opportunity to improve diversity.
Different from other sequential data, sentences in natural language are structured by linguistic grammars. Previous generative conversational models with chain-structured decoder ignore this structure in human language and might generate plausible responses with less satisfactory relevance and fluency. In this study, we aim to incorporate the results from linguistic analysis into the process of sentence generation for high-quality conversation generation. Specifically, we use a dependency parser to transform each response sentence into a dependency tree and construct a training corpus of sentence-tree pairs. A tree-structured decoder is developed to learn the mapping from a sentence to its tree, where different types of hidden states are used to depict the local dependencies from an internal tree node to its children. For training acceleration, we propose a tree canonicalization method, which transforms trees into equivalent ternary trees. Then, with a proposed tree-structured search method, the model is able to generate the most probable responses in the form of dependency trees, which are finally flattened into sequences as the system output. Experimental results demonstrate that the proposed X2Tree framework outperforms baseline methods over 11.15% increase of acceptance ratio.