Do you want to publish a course? Click here

Neural Modular Control for Embodied Question Answering

162   0   0.0 ( 0 )
 Added by Abhishek Das
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a modular approach for learning policies for navigation over long planning horizons from language input. Our hierarchical policy operates at multiple timescales, where the higher-level master policy proposes subgoals to be executed by specialized sub-policies. Our choice of subgoals is compositional and semantic, i.e. they can be sequentially combined in arbitrary orderings, and assume human-interpretable descriptions (e.g. exit room, find kitchen, find refrigerator, etc.). We use imitation learning to warm-start policies at each level of the hierarchy, dramatically increasing sample efficiency, followed by reinforcement learning. Independent reinforcement learning at each level of hierarchy enables sub-policies to adapt to consequences of their actions and recover from errors. Subsequent joint hierarchical training enables the master policy to adapt to the sub-policies. On the challenging EQA (Das et al., 2018) benchmark in House3D (Wu et al., 2018), requiring navigating diverse realistic indoor environments, our approach outperforms prior work by a significant margin, both in terms of navigation and question answering.



rate research

Read More

Questions that require counting a variety of objects in images remain a major challenge in visual question answering (VQA). The most common approaches to VQA involve either classifying answers based on fixed length representations of both the image and question or summing fractional counts estimated from each section of the image. In contrast, we treat counting as a sequential decision process and force our model to make discrete choices of what to count. Specifically, the model sequentially selects from detected objects and learns interactions between objects that influence subsequent selections. A distinction of our approach is its intuitive and interpretable output, as discrete counts are automatically grounded in the image. Furthermore, our method outperforms the state of the art architecture for VQA on multiple metrics that evaluate counting.
Our goal is to answer elementary-level science questions using knowledge extracted automatically from science textbooks, expressed in a subset of first-order logic. Given the incomplete and noisy nature of these automatically extracted rules, Markov Logic Networks (MLNs) seem a natural model to use, but the exact way of leveraging MLNs is by no means obvious. We investigate three ways of applying MLNs to our task. In the first, we simply use the extracted science rules directly as MLN clauses. Unlike typical MLN applications, our domain has long and complex rules, leading to an unmanageable number of groundings. We exploit the structure present in hard constraints to improve tractability, but the formulation remains ineffective. In the second approach, we instead interpret science rules as describing prototypical entities, thus mapping rules directly to grounded MLN assertions, whose constants are then clustered using existing entity resolution methods. This drastically simplifies the network, but still suffers from brittleness. Finally, our third approach, called Praline, uses MLNs to align the lexical elements as well as define and control how inference should be performed in this task. Our experiments, demonstrating a 15% accuracy boost and a 10x reduction in runtime, suggest that the flexibility and different inference semantics of Praline are a better fit for the natural language question answering task.
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
Embodied Question Answering (EQA) is a relatively new task where an agent is asked to answer questions about its environment from egocentric perception. EQA makes the fundamental assumption that every question, e.g., what color is the car?, has exactly one target (car) being inquired about. This assumption puts a direct limitation on the abilities of the agent. We present a generalization of EQA - Multi-Target EQA (MT-EQA). Specifically, we study questions that have multiple targets in them, such as Is the dresser in the bedroom bigger than the oven in the kitchen?, where the agent has to navigate to multiple locations (dresser in bedroom, oven in kitchen) and perform comparative reasoning (dresser bigger than oven) before it can answer a question. Such questions require the development of entirely new modules or components in the agent. To address this, we propose a modular architecture composed of a program generator, a controller, a navigator, and a VQA module. The program generator converts the given question into sequential executable sub-programs; the navigator guides the agent to multiple locations pertinent to the navigation-related sub-programs; and the controller learns to select relevant observations along its path. These observations are then fed to the VQA module to predict the answer. We perform detailed analysis for each of the model components and show that our joint model can outperform previous methods and strong baselines by a significant margin.
226 - Sinan Tan , Mengmeng Ge , Di Guo 2021
In this paper, we propose a novel Knowledge-based Embodied Question Answering (K-EQA) task, in which the agent intelligently explores the environment to answer various questions with the knowledge. Different from explicitly specifying the target object in the question as existing EQA work, the agent can resort to external knowledge to understand more complicated question such as Please tell me what are objects used to cut food in the room?, in which the agent must know the knowledge such as knife is used for cutting food. To address this K-EQA problem, a novel framework based on neural program synthesis reasoning is proposed, where the joint reasoning of the external knowledge and 3D scene graph is performed to realize navigation and question answering. Especially, the 3D scene graph can provide the memory to store the visual information of visited scenes, which significantly improves the efficiency for the multi-turn question answering. Experimental results have demonstrated that the proposed framework is capable of answering more complicated and realistic questions in the embodied environment. The proposed method is also applicable to multi-agent scenarios.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا