Do you want to publish a course? Click here

Scaling properties of direct photon yields in heavy ion collisions

55   0   0.0 ( 0 )
 Added by Michal Praszalowicz
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A recent analysis from the PHENIX collaboration of available direct photon measurement results in collisions of various systems such as Au+Au, Cu+Cu, and Pb+Pb, at different beam energies ranging from 39 to 2760 GeV, has shown a universal, within experimental uncertainties, $multiplicity$ scaling, in which direct photon $p_{T}$-spectra for transverse momenta up to 2 GeV/$c$ are scaled with charged hadron pseudorapidity density at midrapidity raised to power $alpha=1.25$. On the other hand, those direct photon $p_{T}$-spectra also exhibit $geometrical$ scaling in the similar $p_{T}$ range. Assuming power-law dependence of the scaled photon spectra for both scaling laws, we formulate two independent conditions for the power $alpha$, which overshoot experimental data by $sim 10%$ on average. We discuss possible sources that might improve this estimate.

rate research

Read More

285 - J. Berges , K. Reygers , N. Tanji 2017
Recent classical-statistical numerical simulations have established the bottom-up thermalization scenario of Baier et al. as the correct weak coupling effective theory for thermalization in ultrarelativistic heavy-ion collisions. We perform a parametric study of photon production in the various stages of this bottom-up framework to ascertain the relative contribution of the off-equilibrium Glasma relative to that of a thermalized Quark-Gluon Plasma. Taking into account the constraints imposed by the measured charged hadron multiplicities at RHIC and the LHC, we find that Glasma contributions are important especially for large values of the saturation scale at both energies. These non-equilibrium effects should therefore be taken into account in studies where weak coupling methods are employed to compute photon yields.
The direct photon spectra and flow ($v_2$, $v_3$) in heavy-ion collisions at SPS, RHIC and LHC energies are investigated within a relativistic transport approach incorporating both hadronic and partonic phases -- the Parton-Hadron-String Dynamics (PHSD). In the present work, four extensions are introduced compared to our previous calculations: (i) going beyond the soft-photon approximation (SPA) in the calculation of the bremsstrahlung processes $meson+mesonto meson+meson+gamma$, (ii) quantifying the suppression due to the Landau-Pomeranchuk-Migdal (LPM) coherence effect, (iii) adding the additional channels $V+Nto N+gamma$ and $Deltato N+gamma$ and (iv) providing predictions for Pb+Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV. The first issue extends the applicability of the bremsstrahlung calculations to higher photon energies in order to understand the relevant sources in the region $p_T=0.5-1.5$ GeV, while the LPM correction turns out to be important for $p_T<0.4$ GeV in the partonic phase. The results suggest that a large elliptic flow $v_2$ of the direct photons signals a significant contribution of photons produced in interactions of secondary mesons and baryons in the late (hadronic) stage of the heavy-ion collision. In order to further differentiate the origin of the direct photon azimuthal asymmetry (late hadron interactions vs electromagnetic fields in the initial stage), we provide predictions for the triangular flow $v_3(p_T)$ of direct photons. Additionally, we illustrate the magnitude of the photon production in the partonic and hadronic phases as functions of time and local energy density. Finally, the cocktail method for an estimation of the background photon elliptic flow, which is widely used in the experimental works, is supported by the calculations within the PHSD transport approach.
We discuss properties and applications of factorial cumulants of various particle numbers and for their mixed channels measured by the event-by-event analysis in relativistic heavy-ion collisions. After defining the factorial cumulants for systems with multi-particle species, their properties are elucidated. The uses of the factorial cumulants in the study of critical fluctuations are discussed. We point out that factorial cumulants play useful roles in understanding fluctuation observables when they have underlying physics approximately described by the binomial distribution. As examples, we suggest novel utilization methods of the factorial cumulants in the study of the momentum cut and rapidity window dependences of fluctuation observables.
144 - Mike Lisa 2016
The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructure. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectrum and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor $R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{NN}}$ =200 GeV and to the ALICE data for Pb+Pb collisions at $sqrt{s_{NN}}$ =2.76 TeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $R_{AA}$ versus $p_T$ reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا