Do you want to publish a course? Click here

I Am Not What I Write: Privacy Preserving Text Representation Learning

110   0   0.0 ( 0 )
 Added by Ghazaleh Beigi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Online users generate tremendous amounts of textual information by participating in different activities, such as writing reviews and sharing tweets. This textual data provides opportunities for researchers and business partners to study and understand individuals. However, this user-generated textual data not only can reveal the identity of the user but also may contain individuals private information (e.g., age, location, gender). Hence, you are what you write as the saying goes. Publishing the textual data thus compromises the privacy of individuals who provided it. The need arises for data publishers to protect peoples privacy by anonymizing the data before publishing it. It is challenging to design effective anonymization techniques for textual information which minimizes the chances of re-identification and does not contain users sensitive information (high privacy) while retaining the semantic meaning of the data for given tasks (high utility). In this paper, we study this problem and propose a novel double privacy preserving text representation learning framework, DPText, which learns a textual representation that (1) is differentially private, (2) does not contain private information and (3) retains high utility for the given task. Evaluating on two natural language processing tasks, i.e., sentiment analysis and part of speech tagging, we show the effectiveness of this approach in terms of preserving both privacy and utility.



rate research

Read More

In this paper, we address the problem of privacy-preserving distributed learning and the evaluation of machine-learning models by analyzing it in the widespread MapReduce abstraction that we extend with privacy constraints. We design SPINDLE (Scalable Privacy-preservINg Distributed LEarning), the first distributed and privacy-preserving system that covers the complete ML workflow by enabling the execution of a cooperative gradient-descent and the evaluation of the obtained model and by preserving data and model confidentiality in a passive-adversary model with up to N-1 colluding parties. SPINDLE uses multiparty homomorphic encryption to execute parallel high-depth computations on encrypted data without significant overhead. We instantiate SPINDLE for the training and evaluation of generalized linear models on distributed datasets and show that it is able to accurately (on par with non-secure centrally-trained models) and efficiently (due to a multi-level parallelization of the computations) train models that require a high number of iterations on large input data with thousands of features, distributed among hundreds of data providers. For instance, it trains a logistic-regression model on a dataset of one million samples with 32 features distributed among 160 data providers in less than three minutes.
108 - Bo Feng , Qian Lou , Lei Jiang 2020
Billions of text analysis requests containing private emails, personal text messages, and sensitive online reviews, are processed by recurrent neural networks (RNNs) deployed on public clouds every day. Although prior secure networks combine homomorphic encryption (HE) and garbled circuit (GC) to preserve users privacy, naively adopting the HE and GC hybrid technique to implement RNNs suffers from long inference latency due to slow activation functions. In this paper, we present a HE and GC hybrid gated recurrent unit (GRU) network, CryptoGRU, for low-latency secure inferences. CryptoGRU replaces computationally expensive GC-based $tanh$ with fast GC-based $ReLU$, and then quantizes $sigmoid$ and $ReLU$ with a smaller bit length to accelerate activations in a GRU. We evaluate CryptoGRU with multiple GRU models trained on 4 public datasets. Experimental results show CryptoGRU achieves top-notch accuracy and improves the secure inference latency by up to $138times$ over one of state-of-the-art secure networks on the Penn Treebank dataset.
As machine learning becomes a practice and commodity, numerous cloud-based services and frameworks are provided to help customers develop and deploy machine learning applications. While it is prevalent to outsource model training and serving tasks in the cloud, it is important to protect the privacy of sensitive samples in the training dataset and prevent information leakage to untrusted third parties. Past work have shown that a malicious machine learning service provider or end user can easily extract critical information about the training samples, from the model parameters or even just model outputs. In this paper, we propose a novel and generic methodology to preserve the privacy of training data in machine learning applications. Specifically we introduce an obfuscate function and apply it to the training data before feeding them to the model training task. This function adds random noise to existing samples, or augments the dataset with new samples. By doing so sensitive information about the properties of individual samples, or statistical properties of a group of samples, is hidden. Meanwhile the model trained from the obfuscated dataset can still achieve high accuracy. With this approach, the customers can safely disclose the data or models to third-party providers or end users without the need to worry about data privacy. Our experiments show that this approach can effective defeat four existing types of machine learning privacy attacks at negligible accuracy cost.
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural network training. It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data, under a passive-adversary model and collusions between up to $N-1$ parties. To efficiently execute the secure backpropagation algorithm for training neural networks, we provide a generic packing approach that enables Single Instruction, Multiple Data (SIMD) operations on encrypted data. We also introduce arbitrary linear transformations within the cryptographic bootstrapping operation, optimizing the costly cryptographic computations over the parties, and we define a constrained optimization problem for choosing the cryptographic parameters. Our experimental results show that POSEIDON achieves accuracy similar to centralized or decentralized non-private approaches and that its computation and communication overhead scales linearly with the number of parties. POSEIDON trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.
Tree-based models are among the most efficient machine learning techniques for data mining nowadays due to their accuracy, interpretability, and simplicity. The recent orthogonal needs for more data and privacy protection call for collaborative privacy-preserving solutions. In this work, we survey the literature on distributed and privacy-preserving training of tree-based models and we systematize its knowledge based on four axes: the learning algorithm, the collaborative model, the protection mechanism, and the threat model. We use this to identify the strengths and limitations of these works and provide for the first time a framework analyzing the information leakage occurring in distributed tree-based model learning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا