No Arabic abstract
We generalise the work of 1810.11442 for the case of AdS$_7$/CFT$_6$. Starting from the 2-equivalent charge, 3-equivalent rotation non-extremal black-hole solution in 7D gauged supergravity, we consider the supersymmetric and then the extremal limit and evaluate the associated thermodynamic quantities. Away from extremality, the black-hole solution becomes complex. The entropy is then given by the Legendre transform of the on-shell action with respect to two complex chemical potentials subject to a constraint. At the conformal boundary we derive the dual background and evaluate the corresponding partition function for the $A_{N-1}$ 6D (2,0) theory at large $N$ in a Cardy-like limit. This is carried out via a 5D $mathcal N=2$ super Yang-Mills calculation on $S^5$. The gravitational on-shell action is found to be exactly reproduced by the boundary partition function at large $N$. We argue that this agreement puts strong constraints on the form of possible higher-derivative corrections to the 5D gauge theory that is used in the $S^5$ evaluation.
We find a formulation of $mathcal{N}=2$ supersymmetric Yang-Mills theory in Projective superspace. In particular we find an expression for the field strength in terms of an unconstrained prepotential which is desirable when quantizing the theory. We use this to write the action in terms of the prepotential and show that it reduces to the known result in the abelian limit.
We embed general solutions to 4D Einstein-Maxwell theory into $mathcal{N} geq 2$ supergravity and study quadratic fluctuations of the supergravity fields around the background. We compute one-loop quantum corrections for all fields and show that the $c$-anomaly vanishes for complete $mathcal{N}=2$ multiplets. Logarithmic corrections to the entropy of Kerr-Newman black holes are therefore universal and independent of black hole parameters.
We construct an analytic black hole solution in $SU(2)$ Einstein-Yang-Mills theory in five dimensions supporting a Meron field. The gauge field is proportional to a pure gauge and has a non-trivial topological charge. The would-be singularity at the Meron core gets shielded from the exterior by the black hole horizon. The metric has only one integration constant, namely, its ADM mass, which is shown to be finite once an appropriate boundary term is added to the action. The thermodynamics is also worked out, and a first-order phase transition, similar to the one occurring in the Reissner-Nordstr{o}m case is identified. We also show that the solution produces a mbox{textit{spin from isospin effect}}, i.e., even though the theory is constructed out of bosons only, the combined system of a scalar field and this background may become fermionic. More specifically, we study scalar excitations in this purely bosonic background and find that the system describes fermionic degrees of freedom at spatial infinity. Finally, for the asymptotically $AdS_{5}$ case, we study its consequences in the context of the AdS/CFT correspondence.
We perform a numerical bootstrap study of the mixed correlator system containing the half-BPS operators of dimension two and three in $mathcal N = 4$ Super Yang-Mills. This setup improves on previous works in the literature that only considered single correlators of one or the other operator. We obtain upper bounds on the leading twist in a given representation of the R-symmetry by imposing gaps on the twist of all operators rather than the dimension of a single one. As a result we find a tension between the large $N$ supergravity predictions and the numerical finite $N$ results already at $Nsim 100$. A few possible solutions are discussed: the extremal spectrum suggests that at large but finite $N$, in addition to the double trace operators, there exists a second tower of states with smaller dimension. We also obtain new bounds on the dimension of operators which were not accessible with a single correlator setup. Finally we consider bounds on the OPE coefficients of various operators. The results obtained for the OPE coefficient of the lightest scalar singlet show evidences of a two dimensional conformal manifold.
We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued functions on a domain in superambitwistor space ${mathcal L}_{mathbb R}^{5|6}$ of real dimension $(5|6)$. This leads to a procedure for generating solutions of super-Yang-Mills equations on $mathbb R^{3,1}$ via solving a Riemann-Hilbert-type factorization problem on two-spheres in $mathcal L_{mathbb R}^{5|6}$.