Do you want to publish a course? Click here

Hierarchy of Domain Reconstruction Processes due to Charged Defect Migration in Acceptor Doped Ferroelectrics

214   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Evolution of a stripe array of polarization domains triggered by the oxygen vacancy migration in an acceptor doped ferroelectric is investigated in a self-consistent manner. A comprehensive model based on the Landau-Ginzburg-Devonshire approach includes semiconductor features due to the presence of electrons and holes, and effects of electrostriction and flexoelectricity especially significant near the free surface and domain walls. A domain array spontaneously formed in the absence of an external field is shown to undergo a reconstruction in the course of the gradual oxygen vacancy migration driven by the depolarization fields. The charge defect accumulation near the free ferroelectric surface causes a series of phenomena: (i) symmetry breaking between the positive and negative c-domains, (ii) appearance of an effective dipole layer at the free surface followed by the formation of a surface electrostatic potential, (iii) tilting and recharging of the domain walls, especially pronounced at higher acceptor concentrations. An internal bias field determined by the gain in the free energy of the structure exhibits dependences of its amplitude on time and dopant concentration well comparable with available experimental results on aging in BaTiO3.



rate research

Read More

Typical ferroelectrics possess a large spontaneous polarization Ps but simultaneously a large remnant polarization Pr as well, resulting in an inferior energy storage density.A mechanism that can reduce the Pr while maintain the Ps is demanded to enhance the energy storage property of ferroelectrics.In the present study, it is shown that after acceptor doping and aging treatment, the domain switching in ferroelectrics becomes reversible, giving rise to a pinched double hysteresis loop. The pinched loop with a large Ps and a small Pr thus results in an enhanced energy storage density. The physics behind is a defect induced internal field that provides a restoring force for the domains to switch back.The idea is demonstrated through a time-dependent Ginzburg-Landau simulation as well as experimental measurements in BaTiO$_3$ based single crystal and ceramics. The mechanism is general and can be applied to various ferroelectrics, especially the environment-friendly ones.
Deterministic control of domain walls orthogonal to the direction of current flow is demonstrated by exploiting spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO multilayer in presence of an in-plane magnetic field. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. From these measurements, which are unaffected by any conventional spin transfer torque by symmetry, we estimate the spin orbit torque efficiency of Ta to be 0.08.
Using a Ginzburg--Landau--Devonshire model that includes the coupling of polarization to strain, we calculate the fluctuation spectra of ferroelectric domain walls. The influence of the strain coupling differs between 180 degree and 90 degree walls due to the different strain profiles of the two configurations. The finite speed of acoustic phonons, $v_s$, retards the response of the strain to polarization fluctuations, and the results depend on $v_s$. For $v_s to infty$, the strain mediates an instantaneous electrostrictive interaction, which is long-range in the 90 degree wall case. For finite $v_s$, acoustic phonons damp the wall excitations, producing a continuum in the spectral function. As $v_s to 0$, a gapped mode emerges, which corresponds to the polarization oscillating in a fixed strain potential.
Twin domains are naturally present in the topological insulator BiSe{} and affect strongly its properties. While studies of its behavior for ideal BiSe{} structure exist, little is known about their possible interaction with other defects. Extra information are needed especially for the case of artificial perturbation of topological insulator states by magnetic doping, which has attracted a lot of attention recently. Employing ab initio calculations based on layered Greens function formalism, we study the interaction between twin planes in BiSe{}. We show the influence of various magnetic and non-magnetic chemical defects on the twin plane formation energy and discuss the related modification of their distribution. Furthermore, we examine the change of dopants magnetic properties at sites in the vicinity of a twin plane, and the dopants preference to occupy such sites. Our results suggest that twin planes repel each other at least over distance of $3-4$~nm. However, in the presence of magnetic Mn and Fe defects a close TP placement is preferred. Furthermore, calculated twin plane formation energies indicate that in this situation their formation becomes suppressed. Finally, we discuss the influence of twin planes on the surface band gap.
The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001} interface of the band insulators LaAlO$_{3}$ and TiO$_{2}$-terminated SrTiO$_{3}$ (STO). Transport and other measurements in this system show a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed on thermal cycling above the STO cubic-to-tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. The interplay between substrate domains and the interface provides an additional mechanism for understanding and controlling the behaviour of heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا