Do you want to publish a course? Click here

Procedural Generation of Initial States of Sokoban

73   0   0.0 ( 0 )
 Added by Levi Lelis
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Procedural generation of initial states of state-space search problems have applications in human and machine learning as well as in the evaluation of planning systems. In this paper we deal with the task of generating hard and solvable initial states of Sokoban puzzles. We propose hardness metrics based on pattern database heuristics and the use of novelty to improve the exploration of search methods in the task of generating initial states. We then present a system called Beta that uses our hardness metrics and novelty to generate initial states. Experiments show that Beta is able to generate initial states that are harder to solve by a specialized solver than those designed by human experts.



rate research

Read More

Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.
This survey explores Procedural Content Generation via Machine Learning (PCGML), defined as the generation of game content using machine learning models trained on existing content. As the importance of PCG for game development increases, researchers explore new avenues for generating high-quality content with or without human involvement; this paper addresses the relatively new paradigm of using machine learning (in contrast with search-based, solver-based, and constructive methods). We focus on what is most often considered functional game content such as platformer levels, game maps, interactive fiction stories, and cards in collectible card games, as opposed to cosmetic content such as sprites and sound effects. In addition to using PCG for autonomous generation, co-creativity, mixed-initiative design, and compression, PCGML is suited for repair, critique, and content analysis because of its focus on modeling existing content. We discuss various data sources and representations that affect the resulting generated content. Multiple PCGML methods are covered, including neural networks, long short-term memory (LSTM) networks, autoencoders, and deep convolutional networks; Markov models, $n$-grams, and multi-dimensional Markov chains; clustering; and matrix factorization. Finally, we discuss open problems in the application of PCGML, including learning from small datasets, lack of training data, multi-layered learning, style-transfer, parameter tuning, and PCG as a game mechanic.
278 - Anurag Sarkar , Seth Cooper 2021
Behavior trees (BTs) are a popular method of modeling the behavior of NPCs and enemy AI and have found widespread use in a large number of commercial games. In this paper, rather than use BTs to model game-playing agents, we demonstrate their use for modeling game design agents, defining behaviors as executing content generation tasks rather than in-game actions. Similar to how traditional BTs enable modeling behaviors in a modular and dynamic manner, BTs for PCG enable simple subtrees for generating parts of levels to be combined modularly to form more complex trees for generating whole levels as well as generators that can dynamically vary the generated content. We demonstrate this approach by using BTs to model generators for Super Mario Bros., Mega Man and Metroid levels as well as dungeon layouts and discuss several ways in which this PCGBT paradigm could be applied and extended in the future.
Recent procedural content generation via machine learning (PCGML) methods allow learning from existing content to produce similar content automatically. While these approaches are able to generate content for different games (e.g. Super Mario Bros., DOOM, Zelda, and Kid Icarus), it is an open questions how well these approaches can capture large-scale visual patterns such as symmetry. In this paper, we propose match-three games as a domain to test PCGML algorithms regarding their ability to generate suitable patterns. We demonstrate that popular algorithm such as Generative Adversarial Networks struggle in this domain and propose adaptations to improve their performance. In particular we augment the neighborhood of a Markov Random Fields approach to not only take local but also symmetric positional information into account. We conduct several empirical tests including a user study that show the improvements achieved by the proposed modifications, and obtain promising results.
Transfer learning can speed up training in machine learning and is regularly used in classification tasks. It reuses prior knowledge from other tasks to pre-train networks for new tasks. In reinforcement learning, learning actions for a behavior policy that can be applied to new environments is still a challenge, especially for tasks that involve much planning. Sokoban is a challenging puzzle game. It has been used widely as a benchmark in planning-based reinforcement learning. In this paper, we show how prior knowledge improves learning in Sokoban tasks. We find that reusing feature representations learned previously can accelerate learning new, more complex, instances. In effect, we show how curriculum learning, from simple to complex tasks, works in Sokoban. Furthermore, feature representations learned in simpler instances are more general, and thus lead to positive transfers towards more complex tasks, but not vice versa. We have also studied which part of the knowledge is most important for transfer to succeed, and identify which layers should be used for pre-training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا