Do you want to publish a course? Click here

A Comparative Analysis of Knowledge-Intensive and Data-Intensive Semantic Parsers

372   0   0.0 ( 0 )
 Added by Zi Lin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a phenomenon-oriented comparative analysis of the two dominant approaches in task-independent semantic parsing: classic, knowledge-intensive and neural, data-intensive models. To reflect state-of-the-art neural NLP technologies, we introduce a new target structure-centric parser that can produce semantic graphs much more accurately than previous data-driven parsers. We then show that, in spite of comparable performance overall, knowledge- and data-intensive models produce different types of errors, in a way that can be explained by their theoretical properties. This analysis leads to new directions for parser development.



rate research

Read More

We present SmartCrowd, a framework for optimizing collaborative knowledge-intensive crowdsourcing. SmartCrowd distinguishes itself by accounting for human factors in the process of assigning tasks to workers. Human factors designate workers expertise in different skills, their expected minimum wage, and their availability. In SmartCrowd, we formulate task assignment as an optimization problem, and rely on pre-indexing workers and maintaining the indexes adaptively, in such a way that the task assignment process gets optimized both qualitatively, and computation time-wise. We present rigorous theoretical analyses of the optimization problem and propose optimal and approximation algorithms. We finally perform extensive performance and quality experiments using real and synthetic data to demonstrate that adaptive indexing in SmartCrowd is necessary to achieve efficient high quality task assignment.
We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.
AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transparency, and explainability are key to developing trusts in AI systems. As stated in describing trustworthy AI Trust comes through understanding. How AI-led decisions are made and what determining factors were included are crucial to understand. The subarea of explaining AI systems has come to be known as XAI. Multiple aspects of an AI system can be explained; these include biases that the data might have, lack of data points in a particular region of the example space, fairness of gathering the data, feature importances, etc. However, besides these, it is critical to have human-centered explanations that are directly related to decision-making similar to how a domain expert makes decisions based on domain knowledge, that also include well-established, peer-validated explicit guidelines. To understand and validate an AI systems outcomes (such as classification, recommendations, predictions), that lead to developing trust in the AI system, it is necessary to involve explicit domain knowledge that humans understand and use.
Process mining deals with extraction of knowledge from business process execution logs. Traditional process mining tasks, like process model generation or conformance checking, rely on a minimalistic feature set where each event is characterized only by its case identifier, activity type, and timestamp. In contrast, the success of modern machine learning is based on models that take any available data as direct input and build layers of features automatically during training. In this work, we introduce ProcK (Process & Knowledge), a novel pipeline to build business process prediction models that take into account both sequential data in the form of event logs and rich semantic information represented in a graph-structured knowledge base. The hybrid approach enables ProcK to flexibly make use of all information residing in the databases of organizations. Components to extract inter-linked event logs and knowledge bases from relational databases are part of the pipeline. We demonstrate the power of ProcK by training it for prediction tasks on the OULAD e-learning dataset, where we achieve state-of-the-art performance on the tasks of predicting student dropout from courses and predicting their success. We also apply our method on a number of additional machine learning tasks, including exam score prediction and early predictions that only take into account data recorded during the first weeks of the courses.
109 - Shuo Huang , Zhuang Li , Lizhen Qu 2021
Semantic parsing maps natural language (NL) utterances into logical forms (LFs), which underpins many advanced NLP problems. Semantic parsers gain performance boosts with deep neural networks, but inherit vulnerabilities against adversarial examples. In this paper, we provide the empirical study on the robustness of semantic parsers in the presence of adversarial attacks. Formally, adversaries of semantic parsing are considered to be the perturbed utterance-LF pairs, whose utterances have exactly the same meanings as the original ones. A scalable methodology is proposed to construct robustness test sets based on existing benchmark corpora. Our results answered five research questions in measuring the sate-of-the-art parsers performance on robustness test sets, and evaluating the effect of data augmentation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا