Do you want to publish a course? Click here

Electron spin resonance study of spin relaxation in the strong-leg spin ladder with nonmagnetic dilution

71   0   0.0 ( 0 )
 Added by Yulia Krasnikova
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied electron spin resonance (ESR) absorption spectra for the nonmagnetically diluted strong-leg spin ladder magnet ({C}$_{7}$H$_{10}$N)$_{2}$Cu$_{(1-x)}$Zn$_{x}$Br$_{4}$ (abbreviated as DIMPY) down to 450 mK. Formation of the clusters with non-zero net magnetization is confirmed; the cluster-cluster interaction is evidenced by the concentration dependence of ESR absorption. High-temperature spin-relaxation time was found to increase with non-magnetic dilution. The ESR linewidth analysis proves that the Dzyaloshinskii-Moriya (DM) interaction remains the dominant spin-relaxation channel in diluted DIMPY. Experimental data indicate that the dilution results in the weakening of the effective DM interaction, which can be interpreted as total suppression of DM interaction in the close vicinity of impurity atom.



rate research

Read More

Cu(C$_8$H$_6$N$_2$)Cl$_2$, a strong-rung spin-1/2 Heisenberg ladder compound, is probed by means of electron spin resonance (ESR) spectroscopy in the field-induced gapless phase above $H_{c1}$. The temperature dependence of the ESR linewidth is analyzed in the quantum field theory framework, suggesting that the anisotropy of magnetic interactions plays a crucial role, determining the peculiar low-temperature ESR linewidth behavior. In particular, it is argued that the uniform Dzyaloshinskii-Moriya interaction (which is allowed on the bonds along the ladder legs) can be the source of this behavior in Cu(C$_8$H$_6$N$_2$)Cl$_2$.
Inelastic neutron scattering is used to measure the spin excitation spectrum of the Heisenberg $S=1/2$ ladder material (C$_7$H$_10$N)$_2$CuBr$_4$ in its entirety, both in the gapped spin-liquid and the magnetic field induced Tomonaga-Luttinger spin liquid regimes. A fundamental change of the spin dynamics is observed between these two regimes. DMRG calculations quantitatively reproduce and help understand the observed commensurate and incommensurate excitations. The results validate long-standing quantum field theoretical predictions, but also test the limits of that approach.
406 - B. Koteswararao 2007
We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. We present the magnetic contribution to the heat capacity of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat capacity agrees very well with that obtained from the magnetic susceptibility. Significant inter-ladder coupling is suggested from the susceptibility analysis. The hopping integrals determined using Nth order muffin tin orbital (NMTO) based downfolding method lead to ratios of various exchange couplings in agreement with our experimental data. Based on our band structure analysis, we find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing the compound presumably close to the quantum critical limit.
The zero-field excitation spectrum of the strong-leg spin ladder (C$_7$H$_10$N)$_2$CuBr$_4$ (DIMPY) is studied with a neutron time-of-flight technique. The spectrum is decomposed into its symmetric and asymmetric parts with respect to the rung momentum and compared with theoretical results obtained by the density matrix renormalization group method. Additionally, the calculated dynamical correlations are shown for a wide range of rung and leg coupling ratios in order to point out the evolution of arising excitations, as e.g. of the two-magnon bound state from the strong to the weak coupling limit.
The strong-leg S=1/2 Heisenberg spin ladder system (C7H10N)2CuBr4 is investigated using Density Matrix Renormalization Group (DMRG) calculations, inelastic neutron scattering, and bulk magneto-thermodynamic measurements. Measurements showed qualitative differences compared to the strong-rung case. A long-lived two-triplon bound state is confirmed to persist across most of the Brillouin zone in zero field. In applied fields, in the Tomonaga-Luttinger spin liquid phase, elementary excitations are attractive, rather than repulsive. In the presence of weak inter-ladder interactions, the strong-leg system is considerably more prone to 3-dimensional ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا