Do you want to publish a course? Click here

High-flux dual-phase percolation membrane for oxygen separation

131   0   0.0 ( 0 )
 Added by Huixia Luo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A series of composites based on (100-x)wt.%Ce0.9Pr0.1O2-{delta}-xwt.%Pr0.6Ca0.4FeO3-{delta} (x = 25, 40 and 50) doped with the cheap and abundant alkaline earth metal Ca2+ at the A-site has been successfully designed and fabricated. The crystal structure, oxygen permeability, phase and CO2 stability were evaluated. The composition of 60wt.%Ce0.9Pr0.1O2-{delta}-40wt.%Pr0.6Ca0.4FeO3-{delta}(60CPO-40PCFO) possesses the highest oxygen permeability among three studied composites. At 1000 oC, the oxygen permeation fluxes through the 0.3 mm-thickness 60CPO-40PCFO membranes after porous La0.6Sr0.4CoO3-{delta} each to 1.00 mL cm-2 min-1 and 0.62 mL cm-2 min-1 under air/He and air/CO2 gradients, respectively. In situ XRD results demonstrated that the 60CPO-40PCFO sample displayed a perfect structural stability in air as well as CO2-containing atmosphere. Thus, low-cost, Co-free and Sr-free 60CPO-40PCFO has high CO2 stability and is economical and environmental friendly since the expensive and volatile element Co was replaced by Fe and Sr was waived since it easily forms carbonates.



rate research

Read More

489 - Lei Shi , Shu Wang , Tianni Lu 2019
High stability and oxygen permeability are two prominent requirements for the oxygen transport membrane candidates used as industrialization. Herein, we report several composite membranes based on xwt.%Ce0.9Pr0.1O2(CPO)-(100-x)wt.%Pr0.6Sr0.4Fe0.8Al0.2O3(PSFAO) (x = 50, 60 and 75) prepared via a modified Pechini method. Oxygen permeability test reveals that the 60CPO-40PSFAO composition exhibits the highest oxygen permeability. The oxygen permeation flux through the optimal uncoated 0.33 mm-thickness 60CPO-40PSFAO composite can reach 1.03 mL cm-2 min-1 (over the general requirement value of 1 mL cm-2 min-1) in air/He atmosphere at 1000 {deg}C. In situ XRD performance confirms the optimal 60CPO-40PSFAO sample shows excellent stability in CO2-containing atmospheres. The 60CPO-40PSFAO membrane still exhibits simultaneously excellent oxygen permeability and phase stability after operating for over 100 h at air/CO2 condition at 1000 {deg}C, which further indicates that the 60CPO-40PSFAO composite is likely to be used for oxygen supply in CO2 capture
110 - Lei Shi , Shu Wang , Tianni Lu 2019
Ceramic dual-phase oxygen transport membranes with the composition of 60wt.% Ce0.9Pr0.1O2-{delta}-40wt.%Pr0.6Sr0.4Fe1-xAlxO3-{delta} (x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0) (60CPO-40PSF1-xAxO) based on 60Ce0.9Pr0.1O2-{delta}-40Pr0.6Sr0.4FeO3-{delta} doped Al was successfully synthesized through a modified Pechini method. Crystal structure, surface microtopography and oxygen permeability are investigated systematically. The cell parameters of perovskite phase first increased and then decreased with the increase of Al content, which is related to the radius of the Al3+ and the formation of impurity phase. As x ranges from 0.1 to 0.8, the oxygen permeability of the materials first increases and then decreases, and the maximum value of oxygen permeation rate for 60CPO-40PSF1-xAxO membranes with 0.4mm thickness at 1000 {deg}C is 1.12 mL min-1 cm-2 when x = 0.4. XRD measurements revealed high temperature stability and CO2-tolerant property of the dual-phase composites. The partial replacement of Fe$^{3+}$/Fe$^{4+}$ by Al$^{3+}$ causes the material not only to exhibit good stability, but also to increase the oxygen permeability of the membranes.
Developing good performance and low-cost oxygen permeable membranes for CO2 capture based on the oxy-fuel concept is greatly desirable but challenging. Despite tremendous efforts in exploring new CO2-stable dual-phase membranes, its presence is however still far from meeting the industrial requirements. Here we report a series of new Ca-containing CO2-resistant oxygen transporting membranes with composition 60wt.%Ce0.9Ln0.1O2-40wt.%Ln0.6Ca0.4FeO3(CLnO-LnCFO; Ln = La, Pr, Nd, Sm) synthesized via a Pechini one-pot method. Our results indicate all investigated compounds are composed of perovskite and fluorite phases, while the perovskite phases in the CNO-NCFO and CSO-SCFO membranes after sintering generates Ca-rich and Ca-less two kinds of grains with different morphologies, where the Ca-less small perovskite grains block the transport of oxygen ions and eventually result in poor oxygen permeability. Among our investigated CLnO-LnCFO membranes, CPO-PCFO exhibits the highest oxygen permeability and excellent CO2 stability, which were mainly associated with the improvement in crystal symmetry, non-negligible electronic conductivity of fluorite phase and the enhancement in electronic conductivity of perovskite. Our results establish Ca-containing oxides as candidate material platforms for membrane engineering devices that combine CO2 capture and oxygen separation.
Thermal wave crystals based on the dual-phase-lag model are investigated in this paper by both theoretical analysis and numerical simulation to control the non-Fourier heat conduction process. The transfer matrix method is used to calculate the complex dispersion curves. The temperature field is calculated by the finite difference time domain method. The results show that thermal band-gaps exist due to the Bragg-scattering. The key parameters characterizing the band-gaps are analyzed. The thermal wave impedance and mid-gap frequencies are introduced to predict band-gaps theoretically. Our results show that the larger the difference in the thermal wave impedances is, the wider of the thermal band-gaps will be. This study demonstrates a type of the thermal metamaterials which have potential innovative applications such as thermal imagining, thermal diodes and thermal waveguides for energy transmission.
Hydrogen is one of the prime candidates for clean energy source with high energy density. However, current industrial methods of hydrogen production are difficult to provide hydrogen with high purity, thus hard to meet the requirements in many application scenarios. Consequently, the development of large-scale and low-cost hydrogen separation technology is urgently needed. In this work, the gas separation properties of a newly synthesized two-dimensional nanoporous graphene (NPG) membrane material with patterned dumbbell-shape nanopores are investigated. The permeation energy barriers of different gases through this membrane are calculated using the density functional theory (DFT) calculations. Molecular dynamics (MD) simulations are also employed to study the permeation behavior of H2 in binary mixtures with O2, CO2, CO, and CH4. Both the DFT and MD calculation results show that this newly synthesized NPG membrane material can provide a high permeability as well as an ultrahigh selectivity simultaneously, making it a prospective H2 separation membrane with superior performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا