Do you want to publish a course? Click here

Strong coupling Bose polarons in a two-dimensional gas

98   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of interactions in the gas and for a wide range of impurity-gas coupling strengths. A lower and an upper branch of the quasiparticle exist. The lower branch corresponds to an attractive polaron and spans from the regime of weak coupling where the impurity acts as a small density perturbation of the surrounding medium to deep bound states which involve many particles from the bath and extend as far as the healing length. The upper branch corresponds to an excited state where due to repulsion a low-density bubble forms around the impurity but might be unstable against decay into many-body bound states. Interaction effects strongly affect the quasiparticle properties of the polaron. In particular, in the strongly correlated regime, the impurity features a vanishing quasiparticle residue, signaling the transition from an almost free quasiparticle to a bound state involving many atoms from the bath.



rate research

Read More

When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here we address the much less studied non-equilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polarons properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of non-equilibrium problems. We also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Frohlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Frohlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Frohlich model.
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase transition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the 2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at non-zero temperature although it becomes superfluid above a critical phase space density. Ultracold atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature of the BKT transition were recently explored. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a micron-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. In particular we do not observe any significant heating in the central, highly degenerate region if the velocity of the obstacle is below a critical value.
A fluid is said to be emph{scale-invariant} when its interaction and kinetic energies have the same scaling in a dilation operation. In association with the more general conformal invariance, scale invariance provides a dynamical symmetry which has profound consequences both on the equilibrium properties of the fluid and its time evolution. Here we investigate experimentally the far-from-equilibrium dynamics of a cold two-dimensional rubidium Bose gas. We operate in the regime where the gas is accurately described by a classical field obeying the Gross--Pitaevskii equation, and thus possesses a dynamical symmetry described by the Lorentz group SO(2,1). With the further simplification provided by superfluid hydrodynamics, we show how to relate the evolutions observed for different initial sizes, atom numbers, trap frequencies and interaction parameters by a scaling transform. Finally we show that some specific initial shapes - uniformly-filled triangles or disks - may lead to a periodic evolution, corresponding to a novel type of breather for the two-dimensional Gross--Pitaevskii equation.
In superfluid systems several sound modes can be excited, as for example first and second sound in liquid helium. Here, we excite propagating and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in both the superfluid and normal regime. In the superfluid phase, the measured speed of sound is well described by a two-fluid hydrodynamic model, and the weak damping rate is well explained by the scattering with thermal excitations. In the normal phase the sound becomes strongly damped due to a departure from hydrodynamic behavior.
195 - Eric L. Hazlett , Li-Chung Ha , 2013
In condensed matter physics, transport measurements are essential not only for the characterization of materials, but also to discern between quantum phases and identify new ones. The extension of these measurements into atomic quantum gases is emerging and will expand the scope of quantum simulation and atomtronics. To push this frontier, we demonstrate an innovative approach to extract transport properties from the time-resolved redistribution of the particles and energy of a trapped atomic gas. Based on the two-dimensional (2D) Bose gas subject to weak three-body recombination we find clear evidence of both conductive and thermoelectric currents. We then identify the contributions to the currents from thermoelectric forces and determine the Seebeck coefficient (a.k.a. thermopower) and Lorenz number, both showing anomalous behavior in the fluctuation and superfluid regimes. Our results call for further exploration of the transport properties, particularly thermoelectric properties, of atomic quantum gases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا