Do you want to publish a course? Click here

Dynamical symmetry and breathers in a two-dimensional Bose gas

251   0   0.0 ( 0 )
 Added by Jean Dalibard
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A fluid is said to be emph{scale-invariant} when its interaction and kinetic energies have the same scaling in a dilation operation. In association with the more general conformal invariance, scale invariance provides a dynamical symmetry which has profound consequences both on the equilibrium properties of the fluid and its time evolution. Here we investigate experimentally the far-from-equilibrium dynamics of a cold two-dimensional rubidium Bose gas. We operate in the regime where the gas is accurately described by a classical field obeying the Gross--Pitaevskii equation, and thus possesses a dynamical symmetry described by the Lorentz group SO(2,1). With the further simplification provided by superfluid hydrodynamics, we show how to relate the evolutions observed for different initial sizes, atom numbers, trap frequencies and interaction parameters by a scaling transform. Finally we show that some specific initial shapes - uniformly-filled triangles or disks - may lead to a periodic evolution, corresponding to a novel type of breather for the two-dimensional Gross--Pitaevskii equation.



rate research

Read More

In weakly nonlinear dispersive systems, solitons are spatially localized solutions which propagate without changing shape through a delicate balance between dispersion and self-focusing nonlinear effects. These states have been extensively studied in Bose-Einstein condensates, where interatomic interactions give rise to such nonlinearities. Previous experimental work with matter wave solitons has been limited to static intensity profiles. The creation of matter wave breathers--dispersionless soliton-like states with collective oscillation frequencies driven by attractive mean-field interactions--have been of theoretical interest due to the exotic behaviour of interacting matter wave systems. Here, using an attractively interacting Bose-Einstein condensate, we present the first observation of matter wave breathers. A comparison between experimental data and a cubic-quintic Gross-Pitaevskii equation suggests that previously unobserved three-body interactions may play an important role in this system. The observation of long lived stable breathers in an attractively interacting matter wave system indicates that there is a wide range of previously unobserved, but theoretically predicted, effects that are now experimentally accessible.
We study the properties of Bose polarons in two dimensions using quantum Monte Carlo techniques. Results for the binding energy, the effective mass, and the quasiparticle residue are reported for a typical strength of interactions in the gas and for a wide range of impurity-gas coupling strengths. A lower and an upper branch of the quasiparticle exist. The lower branch corresponds to an attractive polaron and spans from the regime of weak coupling where the impurity acts as a small density perturbation of the surrounding medium to deep bound states which involve many particles from the bath and extend as far as the healing length. The upper branch corresponds to an excited state where due to repulsion a low-density bubble forms around the impurity but might be unstable against decay into many-body bound states. Interaction effects strongly affect the quasiparticle properties of the polaron. In particular, in the strongly correlated regime, the impurity features a vanishing quasiparticle residue, signaling the transition from an almost free quasiparticle to a bound state involving many atoms from the bath.
Two-dimensional (2D) systems play a special role in many-body physics. Because of thermal fluctuations, they cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless they may exhibit a phase transition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless (BKT) mechanism. A paradigm example is the 2D Bose fluid, such as a liquid helium film, which cannot Bose-condense at non-zero temperature although it becomes superfluid above a critical phase space density. Ultracold atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature of the BKT transition were recently explored. However, a direct observation of superfluidity in terms of frictionless flow is still missing for these systems. Here we probe the superfluidity of a 2D trapped Bose gas with a moving obstacle formed by a micron-sized laser beam. We find a dramatic variation of the response of the fluid, depending on its degree of degeneracy at the obstacle location. In particular we do not observe any significant heating in the central, highly degenerate region if the velocity of the obstacle is below a critical value.
In superfluid systems several sound modes can be excited, as for example first and second sound in liquid helium. Here, we excite propagating and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in both the superfluid and normal regime. In the superfluid phase, the measured speed of sound is well described by a two-fluid hydrodynamic model, and the weak damping rate is well explained by the scattering with thermal excitations. In the normal phase the sound becomes strongly damped due to a departure from hydrodynamic behavior.
195 - Eric L. Hazlett , Li-Chung Ha , 2013
In condensed matter physics, transport measurements are essential not only for the characterization of materials, but also to discern between quantum phases and identify new ones. The extension of these measurements into atomic quantum gases is emerging and will expand the scope of quantum simulation and atomtronics. To push this frontier, we demonstrate an innovative approach to extract transport properties from the time-resolved redistribution of the particles and energy of a trapped atomic gas. Based on the two-dimensional (2D) Bose gas subject to weak three-body recombination we find clear evidence of both conductive and thermoelectric currents. We then identify the contributions to the currents from thermoelectric forces and determine the Seebeck coefficient (a.k.a. thermopower) and Lorenz number, both showing anomalous behavior in the fluctuation and superfluid regimes. Our results call for further exploration of the transport properties, particularly thermoelectric properties, of atomic quantum gases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا