Do you want to publish a course? Click here

5G NR CA-Polar Maximum Likelihood Decoding by GRAND

141   0   0.0 ( 0 )
 Added by Ken Duffy
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

CA-Polar codes have been selected for all control channel communications in 5G NR, but accurate, computationally feasible decoders are still subject to development. Here we report the performance of a recently proposed class of optimally precise Maximum Likelihood (ML) decoders, GRAND, that can be used with any block-code. As published theoretical results indicate that GRAND is computationally efficient for short-length, high-rate codes and 5G CA-Polar codes are in that class, here we consider GRANDs utility for decoding them. Simulation results indicate that decoding of 5G CA-Polar codes by GRAND, and a simple soft detection variant, is a practical possibility.



rate research

Read More

We formulate maximum likelihood (ML) channel decoding as a quadratic unconstraint binary optimization (QUBO) and simulate the decoding by the current commercial quantum annealing machine, D-Wave 2000Q. We prepared two implementations with Ising model formulations, generated from the generator matrix and the parity-check matrix respectively. We evaluated these implementations of ML decoding for low-density parity-check (LDPC) codes, analyzing the number of spins and connections and comparing the decoding performance with belief propagation (BP) decoding and brute-force ML decoding with classical computers. The results show that these implementations are superior to BP decoding in relatively short length codes, and while the performance in the long length codes deteriorates, the implementation from the parity-check matrix formulation still works up to 1k length with fewer spins and connections than that of the generator matrix formulation due to the sparseness of parity-check matrices of LDPC.
Raptor codes have been widely used in many multimedia broadcast/multicast applications. However, our understanding of Raptor codes is still incomplete due to the insufficient amount of theoretical work on the performance analysis of Raptor codes, particularly under maximum-likelihood (ML) decoding, which provides an optimal benchmark on the system performance for the other decoding schemes to compare against. For the first time, this paper provides an upper bound and a lower bound, on the packet error performance of Raptor codes under ML decoding, which is measured by the probability that all source packets can be successfully decoded by a receiver with a given number of successfully received coded packets. Simulations are conducted to validate the accuracy of the analysis. More specifically, Raptor codes with different degree distribution and pre-coders, are evaluated using the derived bounds with high accuracy.
We study the problem of characterizing when two memoryless binary asymmetric channels, described by their transition probabilities $(p,q)$ and $(p,q)$, are equivalent from the point of view of maximum likelihood decoding (MLD) when restricted to $n$-block binary codes. This equivalence of channels induces a partition (depending on $n$) on the space of parameters $(p,q)$ into regions associated with the equivalence classes. Explicit expressions for describing these regions, their number and areas are derived. Some perspectives of applications of our results to decoding problems are also presented.
A complexity-adaptive tree search algorithm is proposed for $boldsymbol{G}_N$-coset codes that implements maximum-likelihood (ML) decoding by using a successive decoding schedule. The average complexity is close to that of the successive cancellation (SC) decoding for practical error rates when applied to polar codes and short Reed-Muller (RM) codes, e.g., block lengths up to $N=128$. By modifying the algorithm to limit the worst-case complexity, one obtains a near-ML decoder for longer RM codes and their subcodes. Unlike other bit-flip decoders, no outer code is needed to terminate decoding. The algorithm can thus be applied to modified $boldsymbol{G}_N$-coset code constructions with dynamic frozen bits. One advantage over sequential decoders is that there is no need to optimize a separate parameter.
A low-complexity tree search approach is presented that achieves the maximum-likelihood (ML) decoding performance of Reed-Muller (RM) codes. The proposed approach generates a bit-flipping tree that is traversed to find the ML decoding result by performing successive-cancellation decoding after each node visit. A depth-first search (DFS) and a breadth-first search (BFS) scheme are developed and a log-likelihood-ratio-based bit-flipping metric is utilized to avoid redundant node visits in the tree. Several enhancements to the proposed algorithm are presented to further reduce the number of node visits. Simulation results confirm that the BFS scheme provides a lower average number of node visits than the existing tree search approach to decode RM codes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا