No Arabic abstract
The digital Subscriber Line (DSL) remains an important component of heterogeneous networking, especially in historic city-centers, where using optical fibre is less realistic. Recently, the power consumption has become an important performance metric in telecommunication due to the associated environmental issues. In the recent bonding model, customer sites have been equipped with two/four copper pairs, which may be exploited for designing grouped spatial modulation (SM) aiming for reducing the power consumption and mitigating the stubborn crosstalk in DSL communications. Explicitly, we view the two pair copper pairs equipped for each user as a group and propose an energy efficient transmission scheme based on grouped SM strategy for the upstream DSL systems, which is capable of reducing the power consumption of the upstream transmitters by activating a single copper line of each user. More especially, in order to compensate for the potential bit-rate reduction imposed by reducing the number of activated lines, the proposed scheme implicitly delivers ``virtual bits via activating/deactivating the lines in addition to the classic modulation scheme. This is particularly beneficial in the DSL context, because the cross-talk imposed by activating several lines may swamp the desired signal. Furthermore, a pair of near-optimal soft turbo detection schemes are proposed for exploiting the unique properties of the DSL channel in order to eliminate the error propagation problem of SM detection routinely encountered in wireless channels. Both the attainable energy-efficiency and the achievable Bit Error Ratio (BER) are investigated. Our simulation results demonstrate that the proposed group-based SM is capable of outperforming the vectoring scheme both in terms of its energy efficiency for all the examined loop lengths and transmit powers.
A major challenge that is currently faced in the design of applications for the Internet of Things (IoT) concerns with the optimal use of available energy resources given the battery lifetime of the IoT devices. The challenge is derived from the heterogeneity of the devices, in terms of their hardware and the provided functionalities (e.g data processing/communication). In this paper, we propose a novel method for (i) characterizing the parameters that influence energy consumption and (ii) validating the energy consumption of IoT devices against the systems energy-efficiency requirements (e.g. lifetime). Our approach is based on energy-aware models of the IoT applications design in the BIP (Behavior, Interaction, Priority) component framework. This allows for a detailed formal representation of the systems behavior and its subsequent validation, thus providing feedback for enhancements in the pre-deployment or pre-production stages. We illustrate our approach through a Building Management System, using well-known IoT devices running the Contiki OS that communicate by diverse IoT protocols (e.g. CoAP, MQTT). The results allow to derive tight bounds for the energy consumption in various device functionalities, as well as to validate lifetime requirements through Statistical Model Checking.
A novel rate splitting space division multiple access (SDMA) scheme based on grouped code index modulation (GrCIM) is proposed for the sixth generation (6G) downlink transmission. The proposed RSMA-GrCIM scheme transmits information to multiple user equipments (UEs) through the space division multiple access (SDMA) technique, and exploits code index modulation for rate splitting. Since the CIM scheme conveys information bits via the index of the selected Walsh code and binary phase shift keying (BPSK) signal, our RSMA scheme transmits the private messages of each user through the indices, and the common messages via the BPSK signal. Moreover, the Walsh code set is grouped into several orthogonal subsets to eliminate the interference from other users. A maximum likelihood (ML) detector is used to recovery the source bits, and a mathematical analysis is provided for the upper bound bit error ratio (BER) of each user. Comparisons are also made between our proposed scheme and the traditional SDMA scheme in spectrum utilization, number of available UEs, etc. Numerical results are given to verify the effectiveness of the proposed SDMA-GrCIM scheme.
As a green and secure wireless transmission way, secure spatial modulation (SM) is becoming a hot research area. Its basic idea is to exploit both the index of activated transmit antenna and amplitude phase modulation (APM) signal to carry messages, improve security, and save energy. In this paper, we reviewed its crucial techniques: transmit antenna selection (TAS), artificial noise (AN) projection, power allocation (PA), and joint detection at desired receiver. To achieve the optimal performance of maximum likelihood (ML) detector, a deep-neural-network (DNN) joint detector is proposed to jointly infer the index of transmit antenna and signal constellation point with a lower-complexity. Here, each layer of DNN is redesigned to optimize the joint inference performance of two distinct types of information: transmit antenna index and signal constellation point. Simulation results show that the proposed DNN method performs 3dB better than the conventional DNN structure and is close to ML detection in the low and medium signal-to-noise ratio regions in terms of the bit error rate (BER) performance, but its complexity is far lower-complexity compared to ML. Finally, three key techniques TAS, PA, and AN projection at transmitter can be combined to make SM a true secure modulation.
In this paper, we propose an orthogonal frequency division multiplexing (OFDM)-based generalized optical quadrature spatial modulation (GOQSM) technique for multiple-input multiple-output optical wireless communication (MIMO-OWC) systems. Considering the error propagation and noise amplification effects when applying maximum likelihood and maximum ratio combining (ML-MRC)-based detection, we further propose a deep neural network (DNN)-aided detection for OFDM-based GOQSM systems. The proposed DNN-aided detection scheme performs the GOQSM detection in a joint manner, which can efficiently eliminate the adverse effects of both error propagation and noise amplification. The obtained simulation results successfully verify the superiority of the deep learning-aided OFDM-based GOQSM technique for high-speed MIMO-OWC systems.
Transfer learning is proposed to adapt an NN-based nonlinear equalizer across different launch powers and modulation formats using a 450km TWC-fiber transmission. The result shows up to 92% reduction in epochs or 90% in the training dataset.