Do you want to publish a course? Click here

Data integration for high-resolution, continental-scale estimation of air pollution concentrations

125   0   0.0 ( 0 )
 Added by Matthew Thomas
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Air pollution constitutes the highest environmental risk factor in relation to heath. In order to provide the evidence required for health impact analyses, to inform policy and to develop potential mitigation strategies comprehensive information is required on the state of air pollution. Information on air pollution traditionally comes from ground monitoring (GM) networks but these may not be able to provide sufficient coverage and may need to be supplemented with information from other sources (e.g. chemical transport models; CTMs). However, these may only be available on grids and may not capture micro-scale features that may be important in assessing air quality in areas of high population. We develop a model that allows calibration between multiple data sources available at different levels of support by allowing the coefficients of calibration equations to vary over space and time, enabling downscaling where the data is sufficient to support it. The model is used to produce high-resolution (1km $times$ 1km) estimates of NO$_2$ and PM$_{2.5}$ across Western Europe for 2010-2016. Concentrations of both pollutants are decreasing during this period, however there remain large populations exposed to levels exceeding the WHO Air Quality Guidelines and thus air pollution remains a serious threat to health.



rate research

Read More

Air pollution is a major risk factor for global health, with both ambient and household air pollution contributing substantial components of the overall global disease burden. One of the key drivers of adverse health effects is fine particulate matter ambient pollution (PM$_{2.5}$) to which an estimated 3 million deaths can be attributed annually. The primary source of information for estimating exposures has been measurements from ground monitoring networks but, although coverage is increasing, there remain regions in which monitoring is limited. Ground monitoring data therefore needs to be supplemented with information from other sources, such as satellite retrievals of aerosol optical depth and chemical transport models. A hierarchical modelling approach for integrating data from multiple sources is proposed allowing spatially-varying relationships between ground measurements and other factors that estimate air quality. Set within a Bayesian framework, the resulting Data Integration Model for Air Quality (DIMAQ) is used to estimate exposures, together with associated measures of uncertainty, on a high resolution grid covering the entire world. Bayesian analysis on this scale can be computationally challenging and here approximate Bayesian inference is performed using Integrated Nested Laplace Approximations. Model selection and assessment is performed by cross-validation with the final model offering substantial increases in predictive accuracy, particularly in regions where there is sparse ground monitoring, when compared to current approaches: root mean square error (RMSE) reduced from 17.1 to 10.7, and population weighted RMSE from 23.1 to 12.1 $mu$gm$^{-3}$. Based on summaries of the posterior distributions for each grid cell, it is estimated that 92% of the worlds population reside in areas exceeding the World Health Organizations Air Quality Guidelines.
In health-pollution cohort studies, accurate predictions of pollutant concentrations at new locations are needed, since the locations of fixed monitoring sites and study participants are often spatially misaligned. For multi-pollution data, principal component analysis (PCA) is often incorporated to obtain low-rank (LR) structure of the data prior to spatial prediction. Recently developed predictive PCA modifies the traditional algorithm to improve the overall predictive performance by leveraging both LR and spatial structures within the data. However, predictive PCA requires complete data or an initial imputation step. Nonparametric imputation techniques without accounting for spatial information may distort the underlying structure of the data, and thus further reduce the predictive performance. We propose a convex optimization problem inspired by the LR matrix completion framework and develop a proximal algorithm to solve it. Missing data are imputed and handled concurrently within the algorithm, which eliminates the necessity of a separate imputation step. We show that our algorithm has low computational burden and leads to reliable predictive performance as the severity of missing data increases.
283 - Duncan Lee , Gavin Shaddick 2012
The relationship between short-term exposure to air pollution and mortality or morbidity has been the subject of much recent research, in which the standard method of analysis uses Poisson linear or additive models. In this paper we use a Bayesian dynamic generalised linear model (DGLM) to estimate this relationship, which allows the standard linear or additive model to be extended in two ways: (i) the long-term trend and temporal correlation present in the health data can be modelled by an autoregressive process rather than a smooth function of calendar time; (ii) the effects of air pollution are allowed to evolve over time. The efficacy of these two extensions are investigated by applying a series of dynamic and non-dynamic models to air pollution and mortality data from Greater London. A Bayesian approach is taken throughout, and a Markov chain monte carlo simulation algorithm is presented for inference. An alternative likelihood based analysis is also presented, in order to allow a direct comparison with the only previous analysis of air pollution and health data using a DGLM.
This paper presents an approach to estimating the health effects of an environmental hazard. The approach is general in nature, but is applied here to the case of air pollution. It uses a computer model involving ambient pollution and temperature inputs, to simulate the exposures experienced by individuals in an urban area, whilst incorporating the mechanisms that determine exposures. The output from the model comprises a set of daily exposures for a sample of individuals from the population of interest. These daily exposures are approximated by parametric distributions, so that the predictive exposure distribution of a randomly selected individual can be generated. These distributions are then incorporated into a hierarchical Bayesian framework (with inference using Markov Chain Monte Carlo simulation) in order to examine the relationship between short-term changes in exposures and health outcomes, whilst making allowance for long-term trends, seasonality, the effect of potential confounders and the possibility of ecological bias. The paper applies this approach to particulate pollution (PM$_{10}$) and respiratory mortality counts for seniors in greater London ($geq$65 years) during 1997. Within this substantive epidemiological study, the effects on health of ambient concentrations and (estimated) personal exposures are compared.
Identifying the locations and footprints of buildings is vital for many practical and scientific purposes. Such information can be particularly useful in developing regions where alternative data sources may be scarce. In this work, we describe a model training pipeline for detecting buildings across the entire continent of Africa, using 50 cm satellite imagery. Starting with the U-Net model, widely used in satellite image analysis, we study variations in architecture, loss functions, regularization, pre-training, self-training and post-processing that increase instance segmentation performance. Experiments were carried out using a dataset of 100k satellite images across Africa containing 1.75M manually labelled building instances, and further datasets for pre-training and self-training. We report novel methods for improving performance of building detection with this type of model, including the use of mixup (mAP +0.12) and self-training with soft KL loss (mAP +0.06). The resulting pipeline obtains good results even on a wide variety of challenging rural and urban contexts, and was used to create the Open Buildings dataset of 516M Africa-wide detected footprints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا