No Arabic abstract
In this paper we show that in perturbative string theory the genus-one contribution to formal 2-point amplitudes can be related to the genus-zero contribution to 4-point amplitudes. This is achieved by studying special linear combinations of multiple zeta values that appear as coefficients of the amplitudes. We also exploit our results to relate closed strings to open strings at genus one using Browns single-valued projection, proving a conjecture of Broedel, Schlotterer and the second author.
We explore and exploit the relation between non-planar correlators in ${cal N}=4$ super-Yang-Mills, and higher-genus closed string amplitudes in type IIB string theory. By conformal field theory techniques we construct the genus-one, four-point string amplitude in AdS$_5times S^5$ in the low-energy expansion, dual to an ${cal N}=4$ super-Yang-Mills correlator in the t Hooft limit at order $1/c^2$ in a strong coupling expansion. In the flat space limit, this maps onto the genus-one, four-point scattering amplitude for type II closed strings in ten dimensions. Using this approach we reproduce several results obtained via string perturbation theory. We also demonstrate a novel mechanism to fix subleading terms in the flat space limit of AdS amplitudes by using string/M-theory.
We study non-planar correlators in ${cal N}=4$ super-Yang-Mills in Mellin space. We focus in the stress tensor four-point correlator to order $1/N^4$ and in a strong coupling expansion. This can be regarded as the genus-one four-point graviton amplitude of type IIB string theory on $AdS_5 times S^5$ in a low energy expansion. Both the loop supergravity result as well as the tower of stringy corrections have a remarkable simple structure in Mellin space, making manifest important properties such as the correct flat space limit and the structure of UV divergences.
In this paper we present some new identities for multiple polylogarithms (abbr. MPLs) and multiple harmonic star sums (abbr. MHSSs) by using the methods of iterated integral computations of logarithm functions. Then, by applying these formulas obtained, we establish some explicit relations between Kaneko-Yamamoto type multiple zeta values (abbr. K-Y MZVs), multiple zeta values (abbr. MZVs) and MPLs. Further, we find some explicit relations between MZVs and multiple zeta star values (abbr. MZSVs). Furthermore, we define an Ap{e}ry-type variant of MZSVs $zeta^star_B({bf k})$ (called multiple zeta $B$-star values, abbr. MZBSVs) which involve MHSSs and central binomial coefficients, and establish some explicit connections among MZVs, alternating MZVs and MZBSVs by using the method of iterated integrals. Finally, some interesting consequences and illustrative examples are presented.
In an earlier work we used a path integral analysis to propose a higher genus generalization of the elliptic genus. We found a cobordism invariant parametrized by Teichmuller space. Here we simplify the formula and study the behavior of our invariant under the action of the mapping class group of the Riemann surface. We find that our invariant is a modular function with multiplier just as in genus one.
In this paper, we study some Euler-Apery-type series which involve central binomial coefficients and (generalized) harmonic numbers. In particular, we establish elegant explicit formulas of some series by iterated integrals and alternating multiple zeta values. Based on these formulas, we further show that some other series are reducible to ln(2), zeta values, and alternating multiple zeta values by considering the contour integrals related to gamma functions, polygamma functions and trigonometric functions. The evaluations of a large number of special Euler-Apery-type series are presented as examples.