We analyze the attempt by C. Corda to explain the results of modern Moessbauer experiments in a rotating system via the additional effect of synchronization of the clock in the origin of the rotating system with the laboratory clock, and indicate errors committed by him.
Earlier comparisons of galatic rotation curves with MOND have arrived at the conclusion that the parameter a_0 lies within ~20% of cH_0/2pi, where c is the velocity of light and H_0 is the Hubble constant. It is proposed here that, for this value of H_0, signals propagating around the periphery of the Universe are phase locked by the graviton-nucleon interaction.
A hidden variables model complying with the simplest form of Local Realism was recently introduced, which reproduces Quantum Mechanics predictions for an even ideally perfect Bells experiment. This is possible thanks to the use of a non-Boolean vector hidden variable. Yet, that model is as far as Quantum Mechanics from the goal of providing a complete description of physical reality in the EPR-sense. Such complete description includes the capacity to calculate, from the values taken by the hidden variables, the time values when particles are detected. This can be achieved by replacing Borns rule (which allow calculating only probabilities) with a deterministic condition for particle detection. The simplest choice is a threshold condition on the hidden variables. However, in order to test this choice, a new type of quantum (or wave, or non-Boolean) computer is necessary. This new type of quantum computer does not exist yet, not even in theory. In this paper, a classical (Boolean) computer code is presented which mimics the operation of that new type of quantum computer by using contextual instructions. These instructions take into account a consequence of the principle of superposition (which is a typical vector, i.e. non-Boolean, feature). Numerical results generated by the mimicking code are analyzed. They illustrate the features the hypothetical new type of quantum computers output may have, and show how and why some intuitive assumptions about Bells experiment fail.
This Letter, i.e. for the first time, proves that a general invariant velocity is originated from the principle of special relativity, namely, discovers the origin of the general invariant velocity, and when the general invariant velocity is taken as the invariant light velocity in current theories, we get the corresponding special theory of relativity. Further, this Letter deduces triple special theories of relativity in cosmology, and cancels the invariant presumption of light velocity, it is proved that there exists a general constant velocity K determined by the experiments in cosmology, for K > 0, = 0 and < 0, they correspond to three kinds of possible relativistic theories in which the special theory of relativity is naturally contained for the special case of K > 0, and this Letter gives a prediction that, for K < 0, there is another likely case satisfying the principle of special relativity for some special physical systems in cosmology, in which the relativistic effects observed would be that the moving body would be lengthened, moving clock would be quickened. And the point of K = 0 is a bifurcation point, through which it gives out three types of possible universes in the cosmology (or multiverse). When a kind of matter with the maximally invariant velocity that may be superluminal or equal to light velocity is determined by experiments, then the invariant velocity can be taken as one of the general invariant velocity achieved in this Letter, then all results of current physical theories are consistent by utilizing this Letters theory.
The energy momentum tensor of perfect fluid is a simplified but successful model in astrophysics. In this paper, assuming the particles driven by gravity and moving along geodesics, we derived the functions of state in detail. The results show that, these functions have a little correction for the usual thermodynamics. The new functions naturally satisfy the causal condition and consist with relativity. For the self potentials of the particles we introduce an extra function $W$, which acts like negative pressure and can be used to describe dark matter. The results are helpful to understand the relation and interaction between space-time and matter.
It is shown that there exists a new physical reality -- the $Psi$--ether. All the achievements of quantum mechanics and quantum field theory are due to the fact that both the theories include the influence of $Psi$--ether on the physical processes occurring in the Universe. Physics of the XXth century was first of all the physics of $Psi$--ether.
Alexander Kholmetskii
,Tolga Yarman
,Ozan Yarman
.
(2019)
.
"Comment on New proof of general relativity through the correct physical interpretation of the Moeossbauer rotor experiment by C. Corda"
.
Alexander Kholmetskii
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا