Do you want to publish a course? Click here

Dealing with Topological Information within a Fully Convolutional Neural Network

345   0   0.0 ( 0 )
 Added by Etienne Decenciere
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A fully convolutional neural network has a receptive field of limited size and therefore cannot exploit global information, such as topological information. A solution is proposed in this paper to solve this problem, based on pre-processing with a geodesic operator. It is applied to the segmentation of histological images of pigmented reconstructed epidermis acquired via Whole Slide Imaging.



rate research

Read More

Undersampling the k-space data is widely adopted for acceleration of Magnetic Resonance Imaging (MRI). Current deep learning based approaches for supervised learning of MRI image reconstruction employ real-valued operations and representations by treating complex valued k-space/spatial-space as real values. In this paper, we propose complex dense fully convolutional neural network ($mathbb{C}$DFNet) for learning to de-alias the reconstruction artifacts within undersampled MRI images. We fashioned a densely-connected fully convolutional block tailored for complex-valued inputs by introducing dedicated layers such as complex convolution, batch normalization, non-linearities etc. $mathbb{C}$DFNet leverages the inherently complex-valued nature of input k-space and learns richer representations. We demonstrate improved perceptual quality and recovery of anatomical structures through $mathbb{C}$DFNet in contrast to its real-valued counterparts.
In recent years, single image dehazing models (SIDM) based on atmospheric scattering model (ASM) have achieved remarkable results. However, it is noted that ASM-based SIDM degrades its performance in dehazing real world hazy images due to the limited modelling ability of ASM where the atmospheric light factor (ALF) and the angular scattering coefficient (ASC) are assumed as constants for one image. Obviously, the hazy images taken in real world cannot always satisfy this assumption. Such generating modelling mismatch between the real-world images and ASM sets up the upper bound of trained ASM-based SIDM for dehazing. Bearing this in mind, in this study, a new fully non-homogeneous atmospheric scattering model (FNH-ASM) is proposed for well modeling the hazy images under complex conditions where ALF and ASC are pixel dependent. However, FNH-ASM brings difficulty in practical application. In FNH-ASM based SIDM, the estimation bias of parameters at different positions lead to different distortion of dehazing result. Hence, in order to reduce the influence of parameter estimation bias on dehazing results, two new cost sensitive loss functions, beta-Loss and D-Loss, are innovatively developed for limiting the parameter bias of sensitive positions that have a greater impact on the dehazing result. In the end, based on FNH-ASM, an end-to-end CNN-based dehazing network, FNHD-Net, is developed, which applies beta-Loss and D-Loss. Experimental results demonstrate the effectiveness and superiority of our proposed FNHD-Net for dehazing on both synthetic and real-world images. And the performance improvement of our method increases more obviously in dense and heterogeneous haze scenes.
Pansharpening is a fundamental issue in remote sensing field. This paper proposes a side information partially guided convolutional sparse coding (SCSC) model for pansharpening. The key idea is to split the low resolution multispectral image into a panchromatic image related feature map and a panchromatic image irrelated feature map, where the former one is regularized by the side information from panchromatic images. With the principle of algorithm unrolling techniques, the proposed model is generalized as a deep neural network, called as SCSC pansharpening neural network (SCSC-PNN). Compared with 13 classic and state-of-the-art methods on three satellites, the numerical experiments show that SCSC-PNN is superior to others. The codes are available at https://github.com/xsxjtu/SCSC-PNN.
In this paper, a Multi-Scale Fully Convolutional Network (MSFCN) with multi-scale convolutional kernel is proposed to exploit discriminative representations from two-dimensional (2D) satellite images.
Fetal cortical plate segmentation is essential in quantitative analysis of fetal brain maturation and cortical folding. Manual segmentation of the cortical plate, or manual refinement of automatic segmentations is tedious and time-consuming. Automatic segmentation of the cortical plate, on the other hand, is challenged by the relatively low resolution of the reconstructed fetal brain MRI scans compared to the thin structure of the cortical plate, partial voluming, and the wide range of variations in the morphology of the cortical plate as the brain matures during gestation. To reduce the burden of manual refinement of segmentations, we have developed a new and powerful deep learning segmentation method. Our method exploits new deep attentive modules with mixed kernel convolutions within a fully convolutional neural network architecture that utilizes deep supervision and residual connections. We evaluated our method quantitatively based on several performance measures and expert evaluations. Results show that our method outperforms several state-of-the-art deep models for segmentation, as well as a state-of-the-art multi-atlas segmentation technique. We achieved average Dice similarity coefficient of 0.87, average Hausdorff distance of 0.96 mm, and average symmetric surface difference of 0.28 mm on reconstructed fetal brain MRI scans of fetuses scanned in the gestational age range of 16 to 39 weeks. With a computation time of less than 1 minute per fetal brain, our method can facilitate and accelerate large-scale studies on normal and altered fetal brain cortical maturation and folding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا