Do you want to publish a course? Click here

Indications for Dzyaloshinskii-Moriya Interaction at the Pd/Fe Interface Studied by textit{In Situ} Polarized Neutron Reflectometry

230   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using textit{in situ} polarized neutron reflectometry, the depth resolved evolution of the magnetism and structure in a Pd/Fe/Pd trilayer thin-film is measured during growth. The initial film structure of Pd/Fe shows a small proximity induced magnetism in the underlayer and a magnetization in the Fe layer of $approx1.6$,$mu_{text{B}}$ per Fe atom, less than the expected bulk value of $2.2$,$mu_{text{B}}$. Deposition of the Pd capping layer initially follows an island-like growth mode with subsequent coalescence. With increasing Pd deposition the Fe moment and the proximity-induced magnetism in the Pd capping layer decrease. After final deposition of the Pd capping layer, the magnetic profile is structurally and magnetically symmetric across the Fe layer, with magnetism induced in Pd up to 0.92 ,nm from the interface. Throughout the Pd deposition the Pd/Fe/Pd trilayer structure is becoming increasingly symmetric, a fact which points to a Dzyaloshinskii-Moriya interaction as a likely cause of the observed magnetic behavior.



rate research

Read More

Introducing magnetic order into a topological insulator (TI) system has been attracting much attention with an expectation of realizing exotic phenomena such as quantum anomalous Hall effect (QAHE) or axion insulator states. The magnetic proximity effect (MPE) is one of the promising schemes to induce the magnetic order on the surface of TI without introducing disorder accompanied by doping magnetic impurities in TI. In this study, we investigate the MPE at the interface of a heterostructure consisting of a topological crystalline insulator (TCI) SnTe and Fe by employing polarized neutron reflectometry. The ferromagnetic order penetrates $sim$ 3 nm deep into the SnTe layer from the interface with Fe, which persists up to room temperature. Our findings demonstrate that the interfacial magnetism is induced by the MPE on the surface of TCI preserving the coherent topological states, which is essential for the bulk-edge correspondence, without introducing disorder arising from a random distribution magnetic impurities. This opens up a way for realizing next generation electronics, spintronics, and quantum computational devices by making use of the characteristics of TCI.
Using symmetry analysis and density functional theory calculations, we uncover the nature of Dzyaloshinskii-Moriya interaction in Fe$_3$GeTe$_2$ monolayer. We show that while such an interaction might result in small distortion of the magnetic texture on the short range, on the longrange Dzyaloshinskii-Moriya interaction favors in-plane Neel spin-spirals along equivalent directions of the crystal structure. Whereas our results show that the observed Neel skyrmions cannot be explained by the Dzyaloshinskii-Moriya interaction at the monolayer level, they suggest that canted magnetic texture shall arise at the boundary of Fe$_3$GeTe$_2$ nanoflakes or nanoribbons and, most interestingly, that homochiral planar magnetic textures could be stabilized.
We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e. BaTiO3 (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the capability to precisely control its growth, we are able to distinguish the dominant role of the oxide termination (TiO2 vs BaO), from the moderate effect of ferroelectric polarization in the BTO film, on the PMA and DMI at the oxide/FM interface. We find that the interfacial magnetic anisotropy energy of the BaO-BTO/CoFeB structure is two times larger than that of the TiO2-BTO/CoFeB, while the DMI of the TiO2-BTO/CoFeB interface is larger. We explain the observed phenomena by first-principles calculations, which ascribe them to the different electronic states around the Fermi level at the oxide/ferromagnetic metal interfaces and the different spin-flip processes. This study paves the way for further investigation of the PMA and DMI at various oxide/FM structures and thus their applications in the promising field of energy-efficient devices.
A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast motion of chiral textures, i.e., Neel-type domain walls and magnetic skyrmions, can satisfy the demands for high-density data storage, low power consumption and high processing speed. We have engineered epitaxial structures where an epitaxial ferromagnetic Co layer is sandwiched between an epitaxial Pt(111) buffer grown in turn onto MgO(111) substrates and a graphene layer. We provide evidence of a graphene-induced enhancement of the perpendicular magnetic anisotropy up to 4 nm thick Co films, and of the existence of chiral left-handed Neel-type domain walls stabilized by the effective Dzyaloshinskii-Moriya interaction (DMI) in the stack. The experiments show evidence of a sizeable DMI at the gr/Co interface, which is described in terms of a conduction electron mediated Rashba-DMI mechanism and points opposite to the Spin Orbit Coupling-induced DMI at the Co/Pt interface. In addition, the presence of graphene results in: i) a surfactant action for the Co growth, producing an intercalated, flat, highly perfect fcc film, pseudomorphic with Pt and ii) an efficient protection from oxidation. The magnetic chiral texture is stable at room temperature and grown on insulating substrate. Our findings open new routes to control chiral spin structures using interfacial engineering in graphene-based systems for future spin-orbitronics devices fully integrated on oxide substrates.
Brillouin light spectroscopy is a powerful and robust technique for measuring the interfacial Dzyaloshinskii-Moriya interaction in thin films with broken inversion symmetry. Here we show that the magnon visibility, i.e. the intensity of the inelastically scattered light, strongly depends on the thickness of the dielectric seed material - SiO$_2$. By using both, analytical thin-film optics and numerical calculations, we reproduce the experimental data. We therefore provide a guideline for the maximization of the signal by adapting the substrate properties to the geometry of the measurement. Such a boost-up of the signal eases the magnon visualization in ultrathin magnetic films, speeds-up the measurement and increases the reliability of the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا