Do you want to publish a course? Click here

Quantum fluxes at the inner horizon of a spherical charged black hole

139   0   0.0 ( 0 )
 Added by Noa Zilberman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an ongoing effort to explore quantum effects on the interior geometry of black holes, we explicitly compute the semiclassical flux components $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ ($u$ and $v$ being the standard Eddington coordinates) of the renormalized stress-energy tensor for a minimally-coupled massless quantum scalar field, in the vicinity of the inner horizon (IH) of a Reissner-Nordstrom black hole. These two flux components seem to dominate the effect of backreaction in the IH vicinity; and furthermore, their regularization procedure reveals remarkable simplicity. We consider the Hartle-Hawking and Unruh quantum states, the latter corresponding to an evaporating black hole. In both quantum states, we compute $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ in the IH vicinity for a wide range of $Q/M$ values. We find that both $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ attain finite asymptotic values at the IH. Depending on $Q/M$, these asymptotic values are found to be either positive or negative (or vanishing in-between). Note that having a nonvanishing $leftlangle T_{vv}rightrangle _{ren}$ at the IH implies the formation of a curvature singularity on its ingoing section, the Cauchy horizon. Motivated by these findings, we also take initial steps in the exploration of the backreaction effect of these semiclassical fluxes on the near-IH geometry.



rate research

Read More

78 - Noa Zilberman , Amos Ori 2021
We analyze and compute the semiclassical stress-energy flux components, the outflux $langle T_{uu}rangle$ and the influx $langle T_{vv}rangle$ ($u$ and $v$ being the standard null Eddington coordinates), at the inner horizon (IH) of a Reissner-Nordstrom black hole (BH) of mass $M$ and charge $Q$, in the near-extremal domain in which $Q/M$ approaches $1$. We consider a minimally-coupled massless quantum scalar field, in both Hartle-Hawking ($H$) and Unruh ($U$) states, the latter corresponding to an evaporating BH. The near-extremal domain lends itself to an analytical treatment which sheds light on the behavior of various quantities on approaching extremality. We explore the behavior of the three near-IH flux quantities $langle T_{uu}^-rangle^U$, $langle T_{vv}^-rangle^U$, and $langle T_{uu}^-rangle^H=langle T_{vv}^-rangle^H$, as a function of the small parameter $Deltaequivsqrt{1-(Q/M)^2}$ (where the superscript $-$ refers to the IH value). We find that in the near-extremal domain $langle T_{uu}^-rangle^Uconglangle T_{uu}^-rangle^H=langle T_{vv}^-rangle^H$ behaves as $proptoDelta^5$. In contrast, $langle T_{vv}^-rangle^U$ behaves as $proptoDelta^4$, and we calculate the prefactor analytically. It therefore follows that the semiclassical fluxes at the IH neighborhood of an evaporating near-extremal spherical charged BH are dominated by the influx $langle T_{vv}rangle^U$. In passing, we also find an analytical expression for the transmission coefficient outside a Reissner-Nordstrom BH to leading order in small frequencies (which turns out to be a crucial ingredient of our near-extremal analysis). Furthermore, we explicitly obtain the near-extremal Hawking-evaporation rate ($proptoDelta^4$), with an analytical expression for the prefactor (obtained here for the first time to the best of our knowledge). [Abridged]
86 - G.E. Volovik 2021
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established. Here we calculate the entropy of the Reissner-Nordstrom black hole and of the Kerr black hole, which have two horizons. For the spherically symmetric Reissner-Nordstrom black hole we used several different approaches. All of them give the same result for the entropy and for the corresponding temperature of the thermal Hawking radiation. The entropy is not determined by the area of the outer horizon, and it is not equal to the sum of the entropies of two horizons. It is determined by the correlations between the two horizons, due to which the total entropy of the black hole and the temperature of Hawking radiation depend only on mass $M$ of the black hole and do not depend on the black hole charge $Q$. For the Kerr and Kerr-Newman black holes it is shown that their entropy has the similar property: it depends only on mass $M$ of the black hole and does not depend on the angular momentum $J$ and charge $Q$.
65 - A. Peltola , J. Makela 2005
Despite of over thirty years of research of the black hole thermodynamics our understanding of the possible role played by the inner horizons of Reissner-Nordstrom and Kerr-Newman black holes in black hole thermodynamics is still somewhat incomplete: There are derivations which imply that the temperature of the inner horizon is negative and it is not quite clear what this means. Motivated by this problem we perform a detailed analysis of the radiation emitted by the inner horizon of the Reissner-Nordstrom black hole. As a result we find that in a maximally extended Reissner-Nordstrom spacetime virtual particle-antiparticle pairs are created at the inner horizon of the Reissner-Nordstrom black hole such that real particles with positive energy and temperature are emitted towards the singularity from the inner horizon and, as a consequence, antiparticles with negative energy are radiated away from the singularity through the inner horizon. We show that these antiparticles will come out from the white hole horizon in the maximally extended Reissner-Nordstrom spacetime, at least when the hole is near extremality. The energy spectrum of the antiparticles leads to a positive temperature for the white hole horizon. In other words, our analysis predicts that in addition to the radiation effects of black hole horizons, also the white hole horizon radiates. The black hole radiation is caused by the quantum effects at the outer horizon, whereas the white hole radiation is caused by the quantum effects at the inner horizon of the Reissner-Nordstrom black hole.
132 - Ehud Eilon , Amos Ori 2016
We numerically investigate the interior of a four-dimensional, asymptotically flat, spherically symmetric charged black hole perturbed by a scalar field $Phi$. Previous study by Marolf and Ori indicated that late infalling observers will encounter an effective shock wave as they approach the left portion of the inner horizon. This shock manifests itself as a sudden change in the values of various fields, within a tremendously short interval of proper time $tau$ of the infalling observers. We confirm this prediction numerically for both test and self-gravitating scalar field perturbations. In both cases we demonstrate the effective shock in the scalar field by exploring $Phi(tau)$ along a family of infalling timelike geodesics. In the self-gravitating case we also demonstrate the shock in the area coordinate $r$ by exploring $r(tau)$. We confirm the theoretical prediction concerning the shock sharpening rate, which is exponential in the time of infall into the black hole. In addition we numerically probe the early stages of shock formation. We also employ a family of null (rather than timelike) ingoing geodesics to probe the shock in $r$. We use a finite-difference numerical code with double-null coordinates combined with a recently developed adaptive gauge method in order to solve the (Einstein + scalar) field equations and to evolve the spacetime (and scalar field) $ - $ from the region outside the black hole down to the vicinity of the Cauchy horizon and the spacelike $r=0$ singularity.
We numerically compute the renormalized expectation value $langlehat{Phi}^{2}rangle_{ren}$ of a minimally-coupled massless quantum scalar field in the interior of a four-dimensional Reissner-Nordstrom black hole, in both the Hartle-Hawking and Unruh states. To this end we use a recently developed mode-sum renormalization scheme based on covariant point splitting. In both quantum states, $langlehat{Phi}^{2}rangle_{ren}$ is found to approach a emph{finite} value at the inner horizon (IH). The final approach to the IH asymptotic value is marked by an inverse-power tail $r_{*}^{-n}$, where $r_{*}$ is the Regge-Wheeler tortoise coordinate, and with $n=2$ for the Hartle-Hawking state and $n=3$ for the Unruh state. We also report here the results of an analytical computation of these inverse-power tails of $langlehat{Phi}^{2}rangle_{ren}$ near the IH. Our numerical results show very good agreement with this analytical derivation (for both the power index and the tail amplitude), in both quantum states. Finally, from this asymptotic behavior of $langlehat{Phi}^{2}rangle_{ren}$ we analytically compute the leading-order asymptotic behavior of the trace $langlehat{T}_{mu}^{mu}rangle_{ren}$ of the renormalized stress-energy tensor at the IH. In both quantum states this quantity is found to diverge like $b(r-r_{-})^{-1}r_{*}^{-n-2}$ (with $n$ specified above, and with a known parameter $b$). To the best of our knowledge, this is the first fully-quantitative derivation of the asymptotic behavior of these renormalized quantities at the inner horizon of a four-dimensional Reissner-Nordstrom black hole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا