No Arabic abstract
In this paper, we study the trade-off between reliability and latency in machine type communication (MTC), which consists of single transmitter and receiver in the presence of Rayleigh fading channel. We assume that the transmitter does not know the channel conditions, therefore it would be transmitting information over a fixed rate. The fixed rate transmission is modeled as a two-state continuous-time Markov process, where the optimum transmission rate is obtained. Moreover, we conduct a performance analysis for different arrival traffic originated from MTC device via effective rate transmission. We consider that the arrival traffic is modeled as a Markovian process namely Discrete-Time Markov process, Fluid Markov process, and Markov Modulated Poisson process, under delay violation constraints. Using effective bandwidth and effective capacity theories, we evaluate the trade-off between reliability-latency and identify QoS (Quality of Service) requirement, and derive lower and upper bounds for the effective capacity subject to channel memory decay rate limits.
Reconfigurable intelligent surface (RIS) assisted radio is considered as an enabling technology with great potential for the sixth-generation (6G) wireless communications standard. The achievable secrecy rate (ASR) is one of the most fundamental metrics to evaluate the capability of facilitating secure communication for RIS-assisted systems. However, the definition of ASR is based on Shannons information theory, which generally requires long codewords and thus fails to quantify the secrecy of emerging delay-critical services. Motivated by this, in this paper we investigate the problem of maximizing the secrecy rate under a delay-limited quality-of-service (QoS) constraint, termed as the effective secrecy rate (ESR), for an RIS-assisted multiple-input single-output (MISO) wiretap channel subject to a transmit power constraint. We propose an iterative method to find a stationary solution to the formulated non-convex optimization problem using a block coordinate ascent method (BCAM), where both the beamforming vector at the transmitter as well as the phase shifts at the RIS are obtained in closed forms in each iteration. We also present a convergence proof, an efficient implementation, and the associated complexity analysis for the proposed method. Our numerical results demonstrate that the proposed optimization algorithm converges significantly faster that an existing solution. The simulation results also confirm that the secrecy rate performance of the system with stringent delay requirements reduce significantly compared to the system without any delay constraints, and that this reduction can be significantly mitigated by an appropriately placed large-size RIS.
This paper analyzes the effective capacity of delay constrained machine type communication (MTC) networks operating in the finite blocklength regime. First, we derive a closed-form mathematical approximation for the effective capacity in quasi-static Rayleigh fading channels. We characterize the optimum error probability to maximize the concave effective capacity function with reliability constraint and study the effect of signal-to-interference-plus-noise ratio (SINR) variations for different delay constraints. The trade off between reliability and effective capacity maximization reveals that we can achieve higher reliability with limited sacrifice in effective capacity specially when the number of machines is small. Our analysis reveals that SINR variations have less impact on effective capacity for strict delay constrained networks. We present an exemplary scenario for massive MTC access to analyze the interference effect proposing three methods to restore the effective capacity for a certain node which are power control, graceful degradation of delay constraint and joint compensation. Joint compensation combines both power control and graceful degradation of delay constraint, where we perform maximization of an objective function whose parameters are determined according to delay and SINR priorities. Our results show that networks with stringent delay constraints favor power controlled compensation and compensation is generally performed at higher costs for shorter packets.
This paper evaluates the performance of reliability and latency in machine type communication networks, which composed of single transmitter and receiver in the presence of Rayleigh fading channel. The sources traffic arrivals are modeled as Markovian processes namely Discrete-Time Markov process, Fluid Markov process, and Markov Modulated Poisson process, and delay/buffer overflow constraints are imposed. Our approach is based on the reliability and latency outage probability, where transmitter not knowing the channel condition, therefore the transmitter would be transmitting information over the fixed rate. The fixed rate transmission is modeled as a two state Discrete time Markov process, which identifies the reliability level of wireless transmission. Using effective bandwidth and effective capacity theories, we evaluate the trade-off between reliability-latency and identify QoS requirement. The impact of different source traffic originated from MTC devices under QoS constraints on the effective transmission rate are investigated.
Wireless traffic attributable to machine learning (ML) inference workloads is increasing with the proliferation of applications and smart wireless devices leveraging ML inference. Owing to limited compute capabilities at these edge devices, achieving high inference accuracy often requires coordination with a remote compute node or cloud over the wireless cellular network. The accuracy of this distributed inference is, thus, impacted by the communication rate and reliability offered by the cellular network. In this paper, an analytical framework is proposed to characterize inference accuracy as a function of cellular network design. Using the developed framework, it is shown that cellular network should be provisioned with a minimum density of access points (APs) to guarantee a target inference accuracy, and the inference accuracy achievable at asymptotically high AP density is limited by the air-interface bandwidth. Furthermore, the minimum accuracy required of edge inference to deliver a target inference accuracy is shown to be inversely proportional to the density of APs and the bandwidth.
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond. These networks have an inherent feature of parallelism that allows them to boost the capacity and enhance the security of communication systems. Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware. In quantum networks, entanglement is a key resource that allows for data transmission between different nodes. However, to reap the benefits of entanglement and enable efficient quantum communication, the number of generated entangled pairs must be optimized. Indeed, if the entanglement generation rates are not optimized, then some of these valuable resources will be discarded and lost. In this paper, the problem of optimizing the entanglement generation rates and their distribution over a quantum memory is studied. In particular, a quantum network in which users have heterogeneous distances and applications is considered. This problem is posed as a mixed integer nonlinear programming optimization problem whose goal is to efficiently utilize the available quantum memory by distributing the quantum entangled pairs in a way that maximizes the user satisfaction. An interior point optimization method is used to solve the optimization problem and extensive simulations are conducted to evaluate the effectiveness of the proposed system. Simulation results show the key design considerations for efficient quantum networks, and the effect of different network parameters on the network performance.