Do you want to publish a course? Click here

Linear Dynamics Induced by Odometers

103   0   0.0 ( 0 )
 Added by Udayan Darji
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Weighted shifts are an important concrete class of operators in linear dynamics. In particular, they are an essential tool in distinguishing variety dynamical properties. Recently, a systematic study of dynamical properties of composition operators on $L^p$ spaces has been initiated. This class of operators includes weighted shifts and also allows flexibility in construction of other concrete examples. In this article, we study one such concrete class of operators, namely composition operators induced by measures on odometers. In particular, we study measures on odometers which induce mixing and transitive linear operators on $L^p$ spaces.



rate research

Read More

154 - Henk Bruin , Olga Lukina 2021
We describe the infinite interval exchange transformations obtained as a composition of a finite interval exchange transformation and the von Neumann-Kakutani map, called the rotated odometers. We show that with respect to Lebesgue measure on the unit interval, every such transformation is measurably isomorphic to the first return map of a rational parallel flow on a translation surface of finite area with infinite genus and a finite number of ends. We describe the dynamics of rotated odometers by means of Bratteli-Vershik systems, and derive several of their topological and ergodic properties. In particular, we show that every rotated odometer has a unique minimal subsystem, and that there exist rotated odometers whose minimal subsystem does not factor onto the dyadic odometer.
90 - Ethan M. Coven , 2005
We consider a left permutive cellular automaton Phi, with no memory and positive anticipation, defined on the space of all doubly infinite sequences with entries from a finite alphabet. For each such automaton that is not one-to-one, there is a dense set of points X (which is large in another sense too) such that the Phi-orbit closure of each x in X is topologically conjugate to an odometer (the ``+1 map on a projective limit of finite cyclic groups). We identify this odometer in several cases.
In this paper we give explicit characterizations, based on the cutting and spacer parameters, of (a) which rank-one transformations factor onto a given finite cyclic permutation, (b) which rank-one transformations factor onto a given odometer, and (c) which rank-one transformations are isomorphic to a given odometer. These naturally yield characterizations of (d) which rank-one transformations factor onto some (unspecified) finite cyclic permutation, (d) which rank-one transformations are totally ergodic, (e) which rank-one transformations factor onto some (unspecified) odometer, and (f) which rank-one transformations are isomorphic to some (unspecified) odometer.
171 - Henk Bruin , Olga Lukina 2021
A rotated odometer is an infinite interval exchange transformation (IET) obtained as a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In this paper, we consider rotated odometers for which the finite IET is of intervals of length $2^{-N}$, for some $N geq 1$. We show that every such system is measurably isomorphic to a $mathbb{Z}$-action on a rooted tree, and that the unique minimal aperiodic subsystem of this action is always measurably isomorphic to the action of the adding machine. We discuss the applications of this work to the study of group actions on binary trees.
In the early 1970s Eisenberg and Hedlund investigated relationships between expansivity and spectrum of operators on Banach spaces. In this paper we establish relationships between notions of expansivity and hypercyclicity, supercyclicity, Li-Yorke chaos and shadowing. In the case that the Banach space is $c_0$ or $ell_p$ ($1 leq p < infty$), we give complete characterizations of weighted shifts which satisfy various notions of expansivity. We also establish new relationships between notions of expansivity and spectrum. Moreover, we study various notions of shadowing for operators on Banach spaces. In particular, we solve a basic problem in linear dynamics by proving the existence of nonhyperbolic invertible operators with the shadowing property. This also contrasts with the expected results for nonlinear dynamics on compact manifolds, illuminating the richness of dynamics of infinite dimensional linear operators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا