Do you want to publish a course? Click here

Strong electrical magneto-chiral anisotropy in tellurium

72   0   0.0 ( 0 )
 Added by Geert Rikken
 Publication date 2019
  fields Physics
and research's language is English
 Authors G. Rikken




Ask ChatGPT about the research

We report the experimental observation of strong electrical magneto-chiral anistropy (eMChA) in trigonal tellurium (t-Te) crystals. We introduce the tensorial character of the effect and determine several tensor elements and we propose a novel intrinsic bandstructure-based mechanism for eMChA which gives a reasonable description of the principal results.

rate research

Read More

Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-split H4 and H5 and the degenerate H6 valence bands (VB) and the lowest degenerate H6 conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of the H6 CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.
189 - K. K. Meng , J. K. Chen , J. Miao 2020
Nonreciprocal charge transport, which is frequently termed as electrical magnetochiral anisotropy (EMCA) in chiral conductors, touches the most important elements of modern condensed matter physics. Here, we have investigated the EMCA in Pt/PtMnGa (PMG) bilayers with the assitance of nonequilibrium fluctuation theorems. Large EMCA in the Pt/PMG bilayers can be attributed to nonreciprocal response of an interface-driven chiral transport channel. Due to the presence of large charge fluctuations for small current region, higher order EMCA coefficients should be added and they are all functions of current. A combination of asymmetrical electron scattering and spin-dependent scattering furnish the PMG thickness dependent chiral transport behaviors in Pt/PMG bilayers. The dramatically enhanced anomalous Hall angle of PMG further demonstrates the modified surface state properties by strong spin-orbit coupling.
We examine the atomic intermixing phenomenon in three distinct amorphous CoB-based multilayer thin film platforms - Pt/CoB/Ir, Ir/CoB/Pt and Pt/CoB/MgO - which are shown to stabilise room-temperature chiral magnetic textures. Intermixing occurs predominantly between adjacent metallic layers. Notably, it is stack-order dependent, and particularly extensive when Ir sits atop CoB. Intermixing induced variations in magnetic properties are ascribed to the formation of magnetic dead layer arising from CoIr alloying in the metallic stacks. It also produces systematic variations in saturation magnetization, by as much as 30%, across stacks. Crucially, the resulting crossover CoB thickness for the transition from perpendicular to in-plane magnetic anisotropy differs by more than 2x across the stacks. Finally, with thermal annealing treatment over moderate temperatures of 150-300 degree Celsius, the magnetic anisotropy increases monotonically across all stacks, coupled with discernibly larger Hc for the metallic stacks. These are attributed to thermally induced CoPt alloying and MgO crystallization in the metallic and oxide stacks, respectively. Remarkably, the CoB in the Pt/CoB/MgO stacks retains its amorphous nature after annealing. Our results set the stage for harnessing the collective attributes of amorphous CoB-based material platforms and associated annealing processes for modulating magnetic interactions, enabling the tuning of chiral magnetic texture properties in ambient conditions.
Recently, intriguing physical properties have been unraveled in anisotropic layered semiconductors with the in-plane anisotropy often originates directly from the low crystallographic symmetry. However, little has been known about the systems where the size effect dominates the anisotropy of electronic band structures. Here, applying both experiment and theory, we show that the anisotropic energy bands of monoclinic gallium telluride (GaTe) are determined by a strong bulk-surface interaction rather than geometric factors. Bulk electronic states are found to be the major contribution to the highest valence band, whose anisotropy is yet immune to surface doping by potassium atoms. Further analysis indicates the weakened bulk-surface interaction gives rise to an inverse anisotropy of hole effective masses and the strong interlayer coupling induces a direct-indirect-direct band gap transition at transfer from mono- to few-layer GaTe. Our results thus pave the way to future applications of anisotropic layered semiconductors in nanoelectronics and optoelectronics.
Weyl semi-metal is the three dimensional analog of graphene. According to the quantum field theory, the appearance of Weyl points near the Fermi level will cause novel transport phenomena related to chiral anomaly. In the present paper, we report the first experimental evidence for the long-anticipated negative magneto-resistance generated by the chiral anomaly in a newly predicted time-reversal invariant Weyl semi-metal material TaAs. Clear Shubnikov de Haas oscillations (SdH) have been detected starting from very weak magnetic field. Analysis of the SdH peaks gives the Berry phase accumulated along the cyclotron orbits to be {pi}, indicating the existence of Weyl points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا