Do you want to publish a course? Click here

Strong bulk-surface interaction controlled in-plane anisotropy of electronic structure in GaTe

96   0   0.0 ( 0 )
 Added by Jiayu Dai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, intriguing physical properties have been unraveled in anisotropic layered semiconductors with the in-plane anisotropy often originates directly from the low crystallographic symmetry. However, little has been known about the systems where the size effect dominates the anisotropy of electronic band structures. Here, applying both experiment and theory, we show that the anisotropic energy bands of monoclinic gallium telluride (GaTe) are determined by a strong bulk-surface interaction rather than geometric factors. Bulk electronic states are found to be the major contribution to the highest valence band, whose anisotropy is yet immune to surface doping by potassium atoms. Further analysis indicates the weakened bulk-surface interaction gives rise to an inverse anisotropy of hole effective masses and the strong interlayer coupling induces a direct-indirect-direct band gap transition at transfer from mono- to few-layer GaTe. Our results thus pave the way to future applications of anisotropic layered semiconductors in nanoelectronics and optoelectronics.



rate research

Read More

Anisotropy describes the directional dependence of a materials properties such as transport and optical response. In conventional bulk materials, anisotropy is intrinsically related to the crystal structure, and thus not tunable by the gating techniques used in modern electronics. Here we show that, in bilayer black phosphorus with an interlayer twist angle of 90{deg}, the anisotropy of its electronic structure and optical transitions is tunable by gating. Using first-principles calculations, we predict that a laboratory-accessible gate voltage can induce a hole effective mass that is 30 times larger along one Cartesian axis than along the other axis, and the two axes can be exchanged by flipping the sign of the gate voltage. This gate-controllable band structure also leads to a switchable optical linear dichroism, where the polarization of the lowest-energy optical transitions (absorption or luminescence) is tunable by gating. Thus, anisotropy is a tunable degree of freedom in twisted bilayer black phosphorus.
Out-of-plane vibrations are considered as the dominant factor limiting the intrinsic carrier mobility of suspended two-dimensional materials at low carrier concentrations. Anharmonic coupling between in-plane and flexural phonon modes is usually excluded from the consideration. Here we present a theory for the electron-phonon scattering, in which the anharmonic coupling between acoustic phonons is systematically taken into account. Our theory is applied to the typical group V two-dimensional semiconductors: hexagonal phosphorus, arsenic, and antimony. We find that the role of the flexural modes is essentially suppressed by their coupling with in-plane modes. At dopings lower than 10$^{12}$ cm$^{-2}$ the mobility reduction does not exceed 30%, being almost independent of the concentration. Our findings suggest that compared to in-plane phonons, flexural phonons are considerably less important in the electronic transport of two-dimensional semiconductors, even at low carrier concentrations.
We study the valence band structure of ReSe$_{2}$ crystals with varying thickness down to a single layer using nanoscale angle-resolved photoemission spectroscopy and density functional theory. The width of the top valence band in the direction perpendicular to the rhenium chains decreases with decreasing number of layers, from 280 meV for the bulk to 61 meV for monolayer. This demonstrates increase of in-plane anisotropy induced by changes in the interlayer coupling and suggests progressively more one-dimensional character of electronic states in few-layer rhenium dichalcogenides.
Voltage-controlled magnetic anisotropy (VCMA) offers an emerging approach to realize energy-efficient magnetization switching in spintronic devices such as magnetic random access memories (MRAMs). Here, we show that manipulating the condensed states, i.e., introducing quantum well (QW) can significantly influence the VCMA in a Cr/Fe-QW/MgAl2O4 based magnetic tunnel junction (MTJ). Only for the MTJ with an even number of Fe atomic layers, we observed a novel A-shaped VCMA curve for a particular QW state, where magnetic anisotropy energy (MAE) reaches a local maximum at zero bias and reduces when applying both positive and negative bias, i.e., a novel bi-polar VCMA effect. Our ab initio calculations demonstrate that the QW states give an additional contribution to perpendicular magnetic anisotropy (PMA), which can explain not only the A-shaped VCMA but also the Fe-layer-number parity dependence of VCMA. The present study suggests that the QW-modulated VCMA should open a new pathway to design VCMA-assisted MRAM.
Topological insulators are bulk semiconductors that manifest in-gap massless Dirac surface states due to the topological bulk-boundary correspondence principle [1-3]. These surface states have been a subject of tremendous ongoing interest, due both to their intrinsic properties and to higher order emergence phenomena that can be achieved by manipulating the interface environment [4-11]. Here, angle resolved photoemission (ARPES) spectromicroscopy and supplementary scanning tunneling microscopy (STM) are performed on the model topological insulator Bi2Se3 to investigate the interplay of crystallographic inhomogeneity with the topologically ordered bulk and surface band structure. Quantitative analysis methods are developed to obtain key spectroscopic information in spite of a limited dwell time on each measured point. Band energies are found to vary on the scale of 50 meV across the sample surface, enabling single-sample measurements that are analogous to a multi-sample doping series (termed a binning series). Focusing separately on the surface and bulk electrons reveals a nontrivial hybridization-like interplay between fluctuations in the surface and bulk state energetics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا