No Arabic abstract
Typical LHC analyses search for local features in kinematic distributions. Assumptions about anomalous patterns limit them to a relatively narrow subset of possible signals. Wavelets extract information from an entire distribution and decompose it at all scales, simultaneously searching for features over a wide range of scales. We propose a systematic wavelet analysis and show how bumps, bump-dip combinations, and oscillatory patterns are extracted. Our kinematic wavelet analysis kit KWAK provides a publicly available framework to analyze and visualize general distributions.
Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series of length $N$ whose intermittency can give rise to the divergence of their variance. SSA relies on the construction of the lag-covariance matrix C on M lagged copies of the time series over a fixed window width W to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components; here W = M Dt, with Dt the time step. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M <= W <= N. Multi-scale SSA varies W, while keeping a fixed W/M ratio, and uses the eigenvectors of the corresponding lag-covariance matrix C_M as a data-adaptive wavelets; successive eigenvectors of C_M correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain, by a suitable localization of the signals covariance matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic and geophysical time series. A real application is to the Southern Oscillation index (SOI) monthly values for 1933-1996. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 4 and 3 years supports the Devils staircase scenario for the El Nino/Southern Oscillation phenomenon.
Many models of physics beyond the Standard Model include towers of particles whose masses follow an approximately periodic pattern with little spacing between them. These resonances might be too weak to detect individually, but could be discovered as a group by looking for periodic signals in kinematic distributions. The continuous wavelet transform, which indicates how much a given frequency is present in a signal at a given time, is an ideal tool for this. In this paper, we present a series of methods through which continuous wavelet transforms can be used to discover periodic signals in kinematic distributions. Some of these methods are based on a simple test statistic, while others make use of machine learning techniques. Some of the methods are meant to be used with a particular model in mind, while others are model-independent. We find that continuous wavelet transforms can give bounds comparable to current searches and, in some cases, be sensitive to signals that would go undetected by standard experimental strategies.
We study the $eta_c$ photoproduction in $ep$ collisions in this paper. The short-distance coefficients for $cbar{c}(^1S_0^{[1]})$, $cbar{c}(^1S_0^{[8]})$, $cbar{c}(^3S_1^{[8]})$, and $cbar{c}(^1P_1^{[8]})$ photoproductions are evaluated at leading order in $alpha_s$ expansion, where the color-singlet contribution is achieved for the first time. We have carefully analyzed different kinematic distributions of the cross sections and found that the color-singlet contribution is considerably suppressed comparing with the color-octet parts. This feature renders the $eta_c$ photoproduction process an ideal laboratory to test the color-octet mechanism in nonrelativistic QCD. By taking different sets of long-distance matrix elements, we have observed some apparently distinguishable predictions, which can be utilized to scrutinize the validity of these matrix elements.
We discuss a new scale-discretised directional wavelet transform to analyse spin signals defined on the sphere, in particular the polarisation of the cosmic microwave background (CMB).
In this paper we provide a complete and unifying characterization of compactly supported univariate scalar orthogonal wavelets and vector-valued or matrix-valued orthogonal multi-wavelets. This characterization is based on classical results from system theory and basic linear algebra. In particular, we show that the corresponding wavelet and multi-wavelet masks are identified with a transfer function $$ F(z)=A+B z (I-Dz)^{-1} , C, quad z in mathbb{D}={z in mathbb{C} : |z| < 1}, $$ of a conservative linear system. The complex matrices $A, B, C, D$ define a block circulant unitary matrix. Our results show that there are no intrinsic differences between the elegant wavelet construction by Daubechies or any other construction of vector-valued or matrix-valued multi-wavelets. The structure of the unitary matrix defined by $A, B, C, D$ allows us to parametrize in a systematic way all classes of possible wavelet and multi-wavelet masks together with the masks of the corresponding refinable functions.