We discuss a new scale-discretised directional wavelet transform to analyse spin signals defined on the sphere, in particular the polarisation of the cosmic microwave background (CMB).
A new spin wavelet transform on the sphere is proposed to analyse the polarisation of the cosmic microwave background (CMB), a spin $pm 2$ signal observed on the celestial sphere. The scalar directional scale-discretised wavelet transform on the sphere is extended to analyse signals of arbitrary spin. The resulting spin scale-discretised wavelet transform probes the directional intensity of spin signals. A procedure is presented using this new spin wavelet transform to recover E- and B-mode signals from partial-sky observations of CMB polarisation.
This work presents the construction of a novel spherical wavelet basis designed for incomplete spherical datasets, i.e. datasets which are missing in a particular region of the sphere. The eigenfunctions of the Slepian spatial-spectral concentration problem (the Slepian functions) are a set of orthogonal basis functions which exist within a defined region. Slepian functions allow one to compute a convolution on the incomplete sphere by leveraging the recently proposed sifting convolution and extending it to any set of basis functions. Through a tiling of the Slepian harmonic line one may construct scale-discretised wavelets. An illustration is presented based on an example region on the sphere defined by the topographic map of the Earth. The Slepian wavelets and corresponding wavelet coefficients are constructed from this region, and are used in a straightforward denoising example.
Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in theory and practice (to machine precision). Scale-discretised wavelets are closely related to spherical needlets (both were developed independently at about the same time) but relax the axisymmetric property of needlets so that directional signal content can be probed. Needlets have been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties. We show that these properties also hold for directional scale-discretised wavelets on the sphere and derive similar localisation and uncorrelation bounds in both the scalar and spin settings. Scale-discretised wavelets can thus be considered as directional needlets.
QUBIC (Q & U Bolometric Interferometer for Cosmology) is an international ground-based experiment dedicated in the measurement of the polarized fluctuations of the Cosmic Microwave Background (CMB). It is based on bolometric interferometry, an original detection technique which combine the immunity to systematic effects of an interferometer with the sensitivity of low temperature incoherent detectors. QUBIC will be deployed in Argentina, at the Alto Chorrillos mountain site near San Antonio de los Cobres, in the Salta province. The QUBIC detection chain consists in 2048 NbSi Transition Edge Sensors (TESs) cooled to 350mK.The voltage-biased TESs are read out with Time Domain Multiplexing based on Superconducting QUantum Interference Devices (SQUIDs) at 1 K and a novel SiGe Application-Specific Integrated Circuit (ASIC) at 60 K allowing to reach an unprecedented multiplexing (MUX) factor equal to 128. The QUBIC experiment is currently being characterized in the lab with a reduced number of detectors before upgrading to the full instrument. I will present the last results of this characterization phase with a focus on the detectors and readout system.
We present the design and performance of a 2x2 prototype array of corrugated feed-horns in W-band. The module is fabricated using a so-called platelet technique by milling Aluminum plates. This technique is suitable for low-cost and scalable high performance applications. Room temperature Return Loss measurements show a low (<-30 dB) reflection over a 30% bandwidth with a maximum matching of -42 dB at 100 GHz for all four antennas. Beam pattern measurements indicate good repeatability and a low (-25 dB) sidelobe and crosspolarisation levels. This work is particularly relevant for future Cosmic Microwave Background polarisation measurements, which require large microwave cryogenic detector arrays coupled to high performance corrugated feed horns.
Boris Leistedt
,Jason D. McEwen
,Martin Buttner
.
(2015)
.
"Analysing the polarisation of the CMB with spin scale-discretised wavelets"
.
Boris Leistedt
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا