No Arabic abstract
Widespread Chinese social media applications such as Weibo are widely known for monitoring and deleting posts to conform to Chinese government requirements. In this paper, we focus on analyzing a dataset of censored and uncensored posts in Weibo. Despite previous work that only considers text content of posts, we take a multi-modal approach that takes into account both text and image content. We categorize this dataset into 14 categories that have the potential to be censored on Weibo, and seek to quantify censorship by topic. Specifically, we investigate how different factors interact to affect censorship. We also investigate how consistently and how quickly different topics are censored. To this end, we have assembled an image dataset with 18,966 images, as well as a text dataset with 994 posts from 14 categories. We then utilized deep learning, CNN localization, and NLP techniques to analyze the target dataset and extract categories, for further analysis to better understand censorship mechanisms in Weibo. We found that sentiment is the only indicator of censorship that is consistent across the variety of topics we identified. Our finding matches with recently leaked logs from Sina Weibo. We also discovered that most categories like those related to anti-government actions (e.g. protest) or categories related to politicians (e.g. Xi Jinping) are often censored, whereas some categories such as crisis-related categories (e.g. rainstorm) are less frequently censored. We also found that censored posts across all categories are deleted in three hours on average.
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We therefore propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization and each sub-problem can be efficiently solved. Experiments on two challenging real-world image datasets demonstrate the effectiveness and superiority of the proposed method.
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of images and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
A significant challenge in energy system cyber security is the current inability to detect cyber-physical attacks targeting and originating from distributed grid-edge devices such as photovoltaics (PV) panels, smart flexible loads, and electric vehicles. We address this concern by designing and developing a distributed, multi-modal anomaly detection approach that can sense the health of the device and the electric power grid from the edge. This is realized by exploiting unsupervised machine learning algorithms on multiple sources of time-series data, fusing these multiple local observations and flagging anomalies when a deviation from the normal behavior is observed. We particularly focus on the cyber-physical threats to the distributed PVs that has the potential to cause local disturbances or grid instabilities by creating supply-demand mismatch, reverse power flow conditions etc. We use an open source power system simulation tool called GridLAB-D, loaded with real smart home and solar datasets to simulate the smart grid scenarios and to illustrate the impact of PV attacks on the power system. Various attacks targeting PV panels that create voltage fluctuations, reverse power flow etc were designed and performed. We observe that while individual unsupervised learning algorithms such as OCSVMs, Corrupt RF and PCA surpasses in identifying particular attack type, PCA with Convex Hull outperforms all algorithms in identifying all designed attacks with a true positive rate of 83.64% and an accuracy of 95.78%. Our key insight is that due to the heterogeneous nature of the distribution grid and the uncertainty in the type of the attack being launched, relying on single mode of information for defense can lead to increased false alarms and missed detection rates as one can design attacks to hide within those uncertainties and remain stealthy.
We present recent DO results based on approximately 1 fb$^{-1}$ of $p bar{p}$ collisions at $sqrt{s} = 1.96$ TeV recorded at the Fermilab Tevatron. Preliminary results on a search for the flavor changing neutral current process $D^+to pi^+mu^+mu^-$, a measurement of the CP violation parameter in $B$ mixing, $epsilon_B$, and a two sided limit on the $B_s$ oscillation frequency $Delta m_s$ are presented. The limits on $epsilon_B$ and ${cal B}(D^+to pi^+mu^+mu^-)$ are the worlds best limits. The two sided bound on $Delta m_s$ is the first direct indication by a single experiment that $Delta m_s$ is bounded from above.
Attendance rate is an important indicator of students study motivation, behavior and Psychological status; However, the heterogeneous nature of student attendance rates due to the course registration difference or the online/offline difference in a blended learning environment makes it challenging to compare attendance rates. In this paper, we propose a novel method called Relative Attendance Index (RAI) to measure attendance rates, which reflects students efforts on attending courses. While traditional attendance focuses on the record of a single person or course, relative attendance emphasizes peer attendance information of relevant individuals or courses, making the comparisons of attendance more justified. Experimental results on real-life data show that RAI can indeed better reflect student engagement.