Do you want to publish a course? Click here

Presolar Silicon Carbide Grains of Types Y and Z: Their Molybdenum Isotopic Compositions and Stellar Origins

78   0   0.0 ( 0 )
 Added by Nan Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report Mo isotopic compositions of 37 presolar SiC grains of types Y (19) and Z (18), rare types commonly argued to have formed in lower-than-solar metallicity asymptotic giant branch (AGB) stars. Direct comparison of the Y and Z grain data with data for mainstream grains from AGB stars of close-to-solar metallicity demonstrates that the three types of grains have indistinguishable Mo isotopic compositions. We show that the Mo isotope data can be used to constrain the maximum stellar temperatures (TMAX) during thermal pulses in AGB stars. Comparison of FRUITY Torino AGB nucleosynthesis model calculations with the grain data for Mo isotopes points to an origin from low-mass (~1.5-3 Msun) rather than intermediate-mass (>3-~9 Msun) AGB stars. Because of the low efficiency of 22Ne({alpha},n)25Mg at the low TMAX values attained in low-mass AGB stars, model calculations cannot explain the large 30Si excesses of Z grains as arising from neutron capture, so these excesses remain a puzzle at the moment.



rate research

Read More

Cluster analysis of presolar silicon carbide grains based on literature data for 12C/13C, 14N/15N, {delta}30Si/28Si, and {delta}29Si/28Si including or not inferred initial 26Al/27Al data, reveals nine clusters agreeing with previously defined grain types but also highlighting new divisions. Mainstream grains reside in three clusters probably representing different parent star metallicities. One of these clusters has a compact core, with a narrow range of composition, pointing to an enhanced production of SiC grains in asymptotic giant branch (AGB) stars with a narrow range of masses and metallicities. The addition of 26Al/27Al data highlights a cluster of mainstream grains, enriched in 15N and 26Al, which cannot be explained by current AGB models. We defined two AB grain clusters, one with 15N and 26Al excesses, and the other with 14N and smaller 26Al excesses, in agreement with recent studies. Their definition does not use the solar N isotopic ratio as a divider, and the contour of the 26Al-rich AB cluster identified in this study is in better agreement with core-collapse supernova models. We also found a cluster with a mixture of putative nova and AB grains, which may have formed in supernova or nova environments. X grains make up two clusters, having either strongly correlated Si isotopic ratios or deviating from the 2/3 slope line in the Si 3-isotope plot. Finally, most Y and Z grains are jointly clustered, suggesting that the previous use of 12C/13C= 100 as a divider for Y grains was arbitrary. Our results show that cluster analysis is a powerful tool to interpret the data in light of stellar evolution and nucleosynthesis modelling and highlight the need of more multi-element isotopic data for better classification.
This work presents a large consistent study of molybdenum (Mo) and ruthenium (Ru) abundances in the Milky Way. These two elements are important nucleosynthetic diagnostics. In our sample of 71 Galactic metal-poor field stars, we detect Ru and/or Mo in 51 of these (59 including upper limits). The sample consists of high-resolution, high signal-to-noise spectra covering both dwarfs and giants from [Fe/H]=-0.63 down to -3.16. Thus we provide information on the behaviour of Mo I and Ru I at higher and lower metallicity than is currently known. We find a wide spread in the Mo and Ru abundances, which is typical of heavy elements. This indicates that several formation processes, in addition to high entropy winds, can be responsible for the formation of Mo and Ru. The formation processes are traced by comparing Mo and Ru to elements (Sr, Zr, Pd, Ag, Ba, and Eu) with known formation processes. We find contributions from different formation channels, namely p-, slow (s-), and rapid (r-) neutron-capture processes. Molybdenum is a highly convolved element that receives contributions from several processes, whereas Ru is mainly formed by the weak r-process as is silver. We also compare our absolute elemental stellar abundances to relative isotopic abundances of presolar grains extracted from meteorites. Their isotopic abundances can be directly linked to the formation process (e.g. r-only isotopes) providing a unique comparison between observationally derived abundances and the nuclear formation process. The comparison to abundances in presolar grains shows that the r-/s-process ratios from the presolar grains match the total elemental chemical composition derived from metal-poor halo stars with [Fe/H]~ -1.5 to -1.1 dex. This indicates that both grains and stars around and above [Fe/H]=-1.5 are equally (well) mixed and therefore do not support a heterogeneous presolar nebula... Abridged.
Galactic chemical evolution (GCE) is important for understanding the composition of the present-day interstellar medium (ISM) and of our solar system. In this paper, we aim to track the GCE by using the 29Si/30Si ratios in evolved stars and tentatively relate this to presolar grain composition. We used the APEX telescope to detect thermal SiO isotopologue emission toward four oxygen-rich M-type stars. Together with the data retrieved from the Herschel science archive and from the literature, we were able to obtain the 29Si/30Si ratios for a total of 15 evolved stars inferred from their optically thin 29SiO and 30SiO emission. These stars cover a range of masses and ages, and because they do not significantly alter 29Si/30Si during their lifetimes, they provide excellent probes of the ISM metallicity (or 29Si/30Si ratio) as a function of time. The 29Si/30Si ratios inferred from the thermal SiO emission tend to be lower toward low-mass oxygen-rich stars (e.g., down to about unity for W Hya), and close to an interstellar or solar value of 1.5 for the higher-mass carbon star IRC+10216 and two red supergiants. There is a tentative correlation between the 29Si/30Si ratios and the mass-loss rates of evolved stars, where we take the mass-loss rate as a proxy for the initial stellar mass or current stellar age. This is consistent with the different abundance ratios found in presolar grains. We found that older objects (up to possibly 10 Gyr old) in our sample trace a previous, lower 29Si/30Si value of about 1. Material with this isotopic ratio is present in two subclasses of presolar grains, providing independent evidence of the lower ratio. Therefore, the 29Si/30Si ratio derived from the SiO emission of evolved stars is a useful diagnostic tool for the study of the GCE and presolar grains.
Presolar silicon carbide (SiC) grains in meteoritic samples can help constrain circumstellar condensation processes and conditions in C-rich stars and core-collapse supernovae. This study presents our findings on eight presolar SiC grains from AGB stars (four mainstream and one Y grain) and core-collapse supernovae (three X grains), chosen on the basis of {mu}-Raman spectral features that were indicative of their having unusual non-3C polytypes and/or high degrees of crystal disorder. Analytical transmission electron microscopy (TEM), which provides elemental compositional and structural information, shows evidence for complex histories for the grains. Our TEM results confirm the presence of non-3C,2H crystal domains. Minor element heterogeneities and/or subgrains were observed in all grains analyzed for their compositions. The C/O ratios inferred for the parent stars varied from 0.98 to greater than or equal to 1.03. Our data show that SiC condensation can occur under a wide range of conditions, in which environmental factors other than temperature (e.g., pressure, gas composition, heterogeneous nucleation on pre-condensed phases) play a significant role. Based on previous {mu}-Raman studies, about 10% of SiC grains may have infrared (IR) spectral features that are influenced by crystal defects, porosity, and/or subgrains. Future sub-diffraction limited IR measurements of complex SiC grains might shed further light on the relative contributions of each of these features to the shape and position of the characteristic IR 11-{mu}m SiC feature and thus improve the interpretation of IR spectra of AGB stars like those that produced the presolar SiC grains.
Extreme excesses of $^{13}C$ ($^{12}C$/$^{13}C$<10) and $^{15}N$ ($^{14}N$/$^{15}N$<20) in rare presolar SiC grains have been considered diagnostic of an origin in classical novae, though an origin in core collapse supernovae (CCSNe) has also been proposed. We report C, N, and Si isotope data for 14 submicron- to micron-sized $^{13}C$- and $^{15}N$-enriched presolar SiC grains ($^{12}C$/$^{13}C$<16 and $^{14}N$/$^{15}N$<~100) from Murchison, and their correlated Mg-Al, S, and Ca-Ti isotope data when available. These grains are enriched in $^{13}C$ and $^{15}N$, but with quite diverse Si isotopic signatures. Four grains with $^{29,30}Si$ excesses similar to those of type C SiC grains likely came from CCSNe, which experienced explosive H burning occurred during explosions. The independent coexistence of proton- and neutron-capture isotopic signatures in these grains strongly supports heterogeneous H ingestion into the He shell in pre-supernovae. Two of the seven putative nova grains with $^{30}Si$ excesses and $^{29}Si$ depletions show lower-than-solar $^{34}S$/$^{32}S$ ratios that cannot be explained by classical nova nucleosynthetic models. We discuss these signatures within the CCSN scenario. For the remaining five putative nova grains, both nova and supernova origins are viable because explosive H burning in the two stellar sites could result in quite similar proton-capture isotopic signatures. Three of the grains are sub-type AB grains that are also $^{13}C$ enriched, but have a range of higher $^{14}N$/$^{15}N$. We found that $^{15}N$-enriched AB grains (~50<$^{14}N$/$^{15}N$<~100) have distinctive isotopic signatures compared to putative nova grains, such as higher $^{14}N$/$^{15}N$, lower $^{26}Al$/$^{27}Al$, and lack of $^{30}Si$ excess, indicating weaker proton-capture nucleosynthetic environments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا