Do you want to publish a course? Click here

Acoustic Modeling for Automatic Lyrics-to-Audio Alignment

80   0   0.0 ( 0 )
 Added by Emre Yilmaz
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Automatic lyrics to polyphonic audio alignment is a challenging task not only because the vocals are corrupted by background music, but also there is a lack of annotated polyphonic corpus for effective acoustic modeling. In this work, we propose (1) using additional speech and music-informed features and (2) adapting the acoustic models trained on a large amount of solo singing vocals towards polyphonic music using a small amount of in-domain data. Incorporating additional information such as voicing and auditory features together with conventional acoustic features aims to bring robustness against the increased spectro-temporal variations in singing vocals. By adapting the acoustic model using a small amount of polyphonic audio data, we reduce the domain mismatch between training and testing data. We perform several alignment experiments and present an in-depth alignment error analysis on acoustic features, and model adaptation techniques. The results demonstrate that the proposed strategy provides a significant error reduction of word boundary alignment over comparable existing systems, especially on more challenging polyphonic data with long-duration musical interludes.



rate research

Read More

This paper makes several contributions to automatic lyrics transcription (ALT) research. Our main contribution is a novel variant of the Multistreaming Time-Delay Neural Network (MTDNN) architecture, called MSTRE-Net, which processes the temporal information using multiple streams in parallel with varying resolutions keeping the network more compact, and thus with a faster inference and an improved recognition rate than having identical TDNN streams. In addition, two novel preprocessing steps prior to training the acoustic model are proposed. First, we suggest using recordings from both monophonic and polyphonic domains during training the acoustic model. Second, we tag monophonic and polyphonic recordings with distinct labels for discriminating non-vocal silence and music instances during alignment. Moreover, we present a new test set with a considerably larger size and a higher musical variability compared to the existing datasets used in ALT literature, while maintaining the gender balance of the singers. Our best performing model sets the state-of-the-art in lyrics transcription by a large margin. For reproducibility, we publicly share the identifiers to retrieve the data used in this paper.
This paper proposes multistream CNN, a novel neural network architecture for robust acoustic modeling in speech recognition tasks. The proposed architecture processes input speech with diverse temporal resolutions by applying different dilation rates to convolutional neural networks across multiple streams to achieve the robustness. The dilation rates are selected from the multiples of a sub-sampling rate of 3 frames. Each stream stacks TDNN-F layers (a variant of 1D CNN), and output embedding vectors from the streams are concatenated then projected to the final layer. We validate the effectiveness of the proposed multistream CNN architecture by showing consistent improvements against Kaldis best TDNN-F model across various data sets. Multistream CNN improves the WER of the test-other set in the LibriSpeech corpus by 12% (relative). On custom data from ASAPPs production ASR system for a contact center, it records a relative WER improvement of 11% for customer channel audio to prove its robustness to data in the wild. In terms of real-time factor, multistream CNN outperforms the baseline TDNN-F by 15%, which also suggests its practicality on production systems. When combined with self-attentive SRU LM rescoring, multistream CNN contributes for ASAPP to achieve the best WER of 1.75% on test-clean in LibriSpeech.
Sequence-to-sequence text-to-speech (TTS) is dominated by soft-attention-based methods. Recently, hard-attention-based methods have been proposed to prevent fatal alignment errors, but their sampling method of discrete alignment is poorly investigated. This research investigates various combinations of sampling methods and probability distributions for alignment transition modeling in a hard-alignment-based sequence-to-sequence TTS method called SSNT-TTS. We clarify the common sampling methods of discrete variables including greedy search, beam search, and random sampling from a Bernoulli distribution in a more general way. Furthermore, we introduce the binary Concrete distribution to model discrete variables more properly. The results of a listening test shows that deterministic search is more preferable than stochastic search, and the binary Concrete distribution is robust with stochastic search for natural alignment transition.
Audio-to-score alignment aims at generating an accurate mapping between a performance audio and the score of a given piece. Standard alignment methods are based on Dynamic Time Warping (DTW) and employ handcrafted features. We explore the usage of neural networks as a preprocessing step for DTW-based automatic alignment methods. Experiments on music data from different acoustic conditions demonstrate that this method generates robust alignments whilst being adaptable at the same time.
Speech recognition is a well developed research field so that the current state of the art systems are being used in many applications in the software industry, yet as by today, there still does not exist such robust system for the recognition of words and sentences from singing voice. This paper proposes a complete pipeline for this task which may commonly be referred as automatic lyrics transcription (ALT). We have trained convolutional time-delay neural networks with self-attention on monophonic karaoke recordings using a sequence classification objective for building the acoustic model. The dataset used in this study, DAMP - Sing! 300x30x2 [1] is filtered to have songs with only English lyrics. Different language models are tested including MaxEnt and Recurrent Neural Networks based methods which are trained on the lyrics of pop songs in English. An in-depth analysis of the self-attention mechanism is held while tuning its context width and the number of attention heads. Using the best settings, our system achieves notable improvement to the state-of-the-art in ALT and provides a new baseline for the task.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا