Do you want to publish a course? Click here

AC Oscillation of a Spin Soliton Driven by a Constant Force

53   0   0.0 ( 0 )
 Added by Li-Chen Zhao Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phenomena of AC oscillation generated by a DC drive, such as the famous Josephson AC effect in superconductors and Bloch oscillation in solid physics, are of great interest in physics. Here we report another example of such counter-intuitive phenomenon that a spin soliton in a two-component Bose-Einstein condensate is driven by a constant force: The initially static spin soliton first moves in a direction opposite to the force and then changes direction, showing an extraordinary AC oscillation in a long term. In sharp contrast to the Josephson AC effect and Bloch oscillation, we find that the nonlinear interactions play important roles and the spin soliton can exhibit a periodic transition between negative and positive inertial mass even in the absence of periodic potentials. We then develop an explicit quasiparticle model that can account for this extraordinary oscillation satisfactorily. Important implications and possible applications of our finding are discussed.



rate research

Read More

78 - Wenlong Wang 2021
A vortex-bright soliton can precess around a fix point. Here, we find numerically that the fixed point and the associated precessional orbits can be shifted by applying a constant driving force on the bright component, the displacement is proportional to the force with a minus sign. This robust dynamics is then discussed theoretically by treating the vortex-bright soliton as an effective point particle, explaining the observed dynamics and predicting new ones that are subsequently confirmed. By appropriately tuning the force, the vortex-bright soliton can be guided following an arbitrary trajectory, including that it can be pinned and released at will. This finding opens a highly flexible and controllable approach of engineering the dynamics of vortical structures in Bose-Einstein condensates.
We study the quantum reflection of a two-dimensional disk-shaped Bose-Einstein condensate with a dark-soliton excitation by a square potential barrier. For the giving geometry, the dark-soliton initially located at the centre of the condensate cloud survive long enough for investigating the reflection process. We show the time evolution of the reflection probability with respect to various width of the barrier. The asymptotic value of the reflection probability is decreased by the existence of a dark-soliton, and is highly sensitive to the initial orientation of the dark-soliton which also affects the excitation properties during the process of condensate and barrier interaction.
We have recently shown that injection of magnons into a magnetic dielectric via the spin-orbit torque (SOT) effect in the adjacent layer of a heavy metal subjected to the action of short (0.1 $mu$s) current pulses allows for control of a magnon Bose-Einstein Condensate (BEC). Here, the BEC was formed in the process of rapid cooling (RC), when the electric current heating the sample is abruptly terminated. In the present study, we show that the application of a longer (1.0 $mu$s) electric current pulse triggers the formation of a nonlinear localized magnonic bullet below the linear magnon spectrum. After pulse termination, the magnon BEC, as before, is formed at the bottom of the linear spectrum, but the nonlinear bullet continues to exist, stabilized for additional 30 ns by the same process of RC-induced magnon condensation. Our results suggest that a stimulated condensation of excess magnons to all highly populated magnonic states occurs.
We characterize the collective modes of a soliton train in a quasi-one-dimensional Fermi superfluid, using a mean-field formalism. In addition to the expected Goldstone and Higgs modes, we find novel long-lived gapped modes associated with oscillations of the soliton cores. The soliton train has an instability that depends strongly on the interaction strength and the spacing of solitons. It can be stabilized by filling each soliton with an unpaired fermion, thus forming a commensurate Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We find that such a state is always dynamically stable, which paves the way for realizing long-lived FFLO states in experiments via phase imprinting.
An unbiased one-dimensional weak link between two terminals, subjected to the Rashba spin-orbit interaction caused by an AC electric field which rotates periodically in the plane perpendicular to the link, is shown to inject spin-polarized electrons into the terminals. The injected spin-polarization has a DC component along the link and a rotating transverse component in the perpendicular plane. In the adiabatic, low rotation-frequency regime, these polarization components are proportional to the frequency. The DC component of the polarization vanishes for a linearly-polarized electric field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا