No Arabic abstract
We characterize the collective modes of a soliton train in a quasi-one-dimensional Fermi superfluid, using a mean-field formalism. In addition to the expected Goldstone and Higgs modes, we find novel long-lived gapped modes associated with oscillations of the soliton cores. The soliton train has an instability that depends strongly on the interaction strength and the spacing of solitons. It can be stabilized by filling each soliton with an unpaired fermion, thus forming a commensurate Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We find that such a state is always dynamically stable, which paves the way for realizing long-lived FFLO states in experiments via phase imprinting.
In this work dark soliton collisions in a one-dimensional superfluid Fermi gas are studied across the BEC-BCS crossover by means of a recently developed finite-temperature effective field theory [S. N. Klimin, J. Tempere, G. Lombardi, J. T. Devreese, Eur. Phys. J. B 88, 122 (2015)] . The evolution of two counter-propagating solitons is simulated numerically based on the theorys nonlinear equation of motion for the pair field. The resulting collisions are observed to introduce a spatial shift into the trajectories of the solitons. The magnitude of this shift is calculated and studied in different conditions of temperature and spin-imbalance. When moving away from the BEC-regime, the collisions are found to become inelastic, emitting the lost energy in the form of small-amplitude density oscillations. This inelasticity is quantified and its behavior analyzed and compared to the results of other works. The dispersion relation of the density oscillations is calculated and is demonstrated to show a good agreement with the spectrum of collective excitations of the superfluid.
The Leggett collective excitations for a two-band Fermi gas with s-wave pairing and Josephson interband coupling in the BCS-BEC crossover at finite temperatures are investigated within the Gaussian pair fluctuation approach. Eigenfrequencies and damping factors for Leggett modes are determined in a nonperturbative way, using the analytic continuation of the fluctuation propagator through a branch cut in the complex frequency plane, as in Phys. Rev. Lett. 122, 093403 (2019). The treatment is performed beyond the low-energy expansion, which is necessary when the collective excitation energy reaches the pair-breaking continuum edge. The results are applied in particular to cold atomic gases at the orbital Feshbach resonance and in a regime far from BEC, which can be relevant for future experiments.
Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength $g$ and particle number $N$. By contrast, in two dimensions, solitons appear only for discrete values of $gN$, the so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we imprint the soliton wave function using an optical transfer to another state. We explore various interaction strengths, atom numbers and sizes, and confirm the existence of a solitonic behaviour for a specific value of $gN$ and arbitrary sizes, a hallmark of scale invariance.
Time crystals are a phase of matter, for which the discrete time symmetry of the driving Hamiltonian is spontaneously broken. The breaking of discrete time symmetry has been observed in several experiments in driven spin systems. Here, we show the observation of a space-time crystal using ultra-cold atoms, where the periodic structure in both space and time are directly visible in the experimental images. The underlying physics in our superfluid can be described ab initio and allows for a clear identification of the mechanism that causes the spontaneous symmetry breaking. Our results pave the way for the usage of space-time crystals for the discovery of novel nonequilibrium phases of matter.
We study the phononic collective modes of the pairing field $Delta$ and their corresponding signature in both the order-parameter and density response functions for a superfluid Fermi gas at all temperatures below $T_c$ in the collisionless regime. The spectra of collective modes are calculated within the Gaussian Pair Fluctuation approximation. We deal with the coupling of these modes to the fermionic continuum of quasiparticle-quasihole excitations by performing a non-perturbative analytic continuation of the pairing field propagator. At low temperature, we recover the known exponential temperature dependence of the damping rate and velocity shift of the Anderson-Bogoliubov branch. In the vicinity of $T_c$, we find analytically a weakly-damped collective mode whose velocity vanishes with a critical exponent of $1/2$, and whose quality factor diverges logarithmically with $T_c-T$, thereby clarifying an existing debate in the literature (Andrianov et al. Th. Math. Phys. 28, 829, Ohashi et al. J. Phys. Jap. 66, 2437). A transition between these two phononic branches is visible at intermediary temperatures, particularly in the BCS limit where the phase-phase response function displays two maxima.