Do you want to publish a course? Click here

Observations of a Pre-Merger Shock in Colliding Clusters of Galaxies

124   0   0.0 ( 0 )
 Added by Liyi Gu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Clusters of galaxies are the largest known gravitationally-bound structures in the Universe. When clusters collide, they create merger shocks on cosmological scales, which transform most of the kinetic energy carried by the cluster gaseous halos into heat. Observations of merger shocks provide key information of the merger dynamics, and enable insights into the formation and thermal history of the large-scale structures. Nearly all of the merger shocks are found in systems where the clusters have already collided, knowledge of shocks in the pre-merger phase is a crucial missing ingredient. Here we report on the discovery of a unique shock in a cluster pair 1E 2216 and 1E 2215. The two clusters are observed at an early phase of major merger. Contrary to all the known merger shocks observed ubiquitously on merger axes, the new shock propagates outward along the equatorial plane of the merger. This discovery uncovers an important epoch in the formation of massive clusters, when the rapid approach of the cluster pair leads to strong compression of gas along the merger axis. Current theoretical models predict that the bulk of the shock energy might be dissipated outside the clusters, and eventually turn into heat of the pristine gas in the circum-cluster space.



rate research

Read More

111 - Lidia Pieri 2009
The presence of dark matter in the halo of our galaxy could be revealed through indirect detection of annihilation products. Dark matter annihilation is one of the possible interpretations of the recent measured excesses in positron and electron fluxes, once boost factors of the order of 10^3 or more are taken into account. Such boost factors are actually achievable through the velocity-dependent Sommerfeld enhancement of the annihilation cross-section. Here we study the expected gamma-ray flux from two local dwarf galaxies for which air Cerenkov measurements are available, namely Draco and Sagittarius. We use velocity dispersion measurements to model the dark matter halos of the dwarfs, and the results of numerical simulations to model the presence of an associated population of subhalos. We incorporate the Sommerfeld enhancement of the annihilation cross-section. We compare our predictions with observations of Draco and Sagittarius performed by MAGIC and HESS, respectively. We also compare our results with the sensitivities of Fermi and of the future Cherenkov Telescope Array. We find that the boost factor due to the Sommerfeld enhancement is already constrained by the MAGIC and HESS data, with enhancements greater than 5 x 10^4 being excluded. While Fermi will not be able to detect gamma-rays from the dwarf galaxies s even with the most optimistic Sommerfeld effect, we show that the Cherenkov Telescope Array will be able to test enhancements greater than 1.5 x 10^3.
It is shown that, under some generic assumptions, shocks cannot accelerate particles unless the overall shock Mach number exceeds a critical value M > sqrt(5). The reason is that for M <= sqrt(5) the work done to compress the flow in a particle precursor requires more enthalpy flux than the system can sustain. This lower limit applies to situations without significant magnetic field pressure. In case that the magnetic field pressure dominates the pressure in the unshocked medium, i.e. for low plasma beta, the resistivity of the magnetic field makes it even more difficult to fulfil the energetic requirements for the formation of shock with an accelerated particle precursor and associated compression of the upstream plasma. We illustrate the effects of magnetic fields for the extreme situation of a purely perpendicular magnetic field configuration with plasma beta = 0, which gives a minimum Mach number of M = 5/2. The situation becomes more complex, if we incorporate the effects of pre-existing cosmic rays, indicating that the additional degree of freedom allows for less strict Mach number limits on acceleration. We discuss the implications of this result for low Mach number shock acceleration as found in solar system shocks, and shocks in clusters of galaxies.
317 - M. H. Cohen 2014
Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cluster around an axis at position angle -166.6 deg that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical 2-D relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock. Because of this, and the close analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as a recollimation shock. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model the beam has Lorentz factor about 3.5 in the frame of the host galaxy, and the fast mode wave has Lorentz factor about 1.6 in the frame of the beam. This gives a maximum apparent speed for the moving features 10c. In this model the Lorentz factor of the pattern in the galaxy frame is approximately 3 times larger than that of the beam itself.
Though theoretically expected, the charge exchange emission from galaxy clusters has not yet been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As suggested in Gu et al. (2015), a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly-discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM. We introduce a sample of 21 clusters observed with the RGS. The dominating thermal plasma emission is modeled and subtracted with a two-temperature CIE component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. By the residual stacking, we do find a hint of a line-like feature at 14.82 A, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8 sigma, and the average equivalent width is 2.5E-4 keV. We further demonstrate that the putative feature can be hardly affected by the systematic errors from continuum modelling and instrumental effects, or the atomic uncertainties of the neighbouring thermal lines. Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we would expect that the oxygen abundance is potentially overestimated by 8-22% in previous X-ray measurements which assumed pure thermal lines.
Understanding the thermodynamic state of the hot intracluster medium (ICM) in a galaxy cluster requires a knowledge of the plasma transport processes, especially thermal conduction. The basic physics of thermal conduction in plasmas with ICM-like conditions has yet to be elucidated, however. We use particle-in-cell simulations and analytic models to explore the dynamics of an ICM-like plasma (with small gyroradius, large mean-free-path, and strongly sub-dominant magnetic pressure) driven by the diffusive heat flux associated with thermal conduction. Lin- ear theory reveals that whistler waves are driven unstable electron heat flux, even when the heat flux is weak. The resonant interaction of electrons with these waves then plays a critical role in scattering electrons and suppressing the heat flux. In a 1D model where only whistler modes that are parallel to the magnetic field are captured, the only resonant electrons are moving in the opposite direction to the heat flux and the electron heat flux suppression is small. In 2D or more, oblique whistler modes also resonate with electrons moving in the direction of the heat flux. The overlap of resonances leads to effective symmetrization of the electron distribution function and a strong suppression of heat flux. The results suggest that thermal conduction in the ICM might be strongly suppressed, possibly to negligible levels.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا