Do you want to publish a course? Click here

Self-Oscillating Capacitive Wireless Power Transfer with Robust Operation

102   0   0.0 ( 0 )
 Added by Fu Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that a capacitive wireless power transfer device can be designed as a self-oscillating circuit using operational amplifiers. As the load and the capacitive wireless channels are part of the feedback circuit of the oscillator, the wireless power transfer can self-adjust to the optimal condition under the change of the load resistance and the transfer distance. We have theoretically analyzed and experimentally demonstrated the proposed design. The results show that the operation is robust against changes of various parameters, including the load resistance.



rate research

Read More

While wired-power-transfer devices ensure robust power delivery even if the receiver position or load impedance changes, achieving the robustness of wireless power transfer (WPT) is challenging. Conventional solutions are based on additional control circuits for dynamic tuning. Here, we propose a robust WPT system in which no additional tuning circuitry is required for robust operation. This is achieved by our systematically designing the load and the coupling link to be parts of the feedback circuit. Therefore, the WPT operation is automatically adjusted to the optimal working condition under a wide range of load and receiver positions. In addition, pulsed oscillations instead of single-harmonic oscillation are adopted to increase the overall efficiency. An example system is designed with the use of a capacitive coupling link. It realizes a virtual, nearly-ideal oscillating voltage source at the load site, giving efficient power transfer comparable to that of the ideal wired-connection scenario. We numerically and experimentally verify the robustness of the WPT system under the variations of load and coupling, where coupling is changing by our varying the alignment of aluminum plates. The working frequency and the transferred power agree well with analytical models. The proposed paradigm can have a significant impact on future high-performance WPT devices. The designed system can also work as a smart table supporting multiple receivers with robust and efficient operation.
Recent advances in non-radiative wireless power transfer (WPT) technique essentially relying on magnetic resonance and near-field coupling have successfully enabled a wide range of applications. However, WPT systems based on double resonators are severely limited to short- or mid-range distance, due to the deteriorating efficiency and power with long transfer distance. WPT systems based on multi-relay resonators can overcome this problem, which, however, suffer from sensitivity to perturbations and fabrication imperfections. Here, we experimentally demonstrate a concept of topological wireless power transfer (TWPT), where energy is transferred efficiently via the near-field coupling between two topological edge states localized at the ends of a one-dimensional radiowave topological insulator. Such a TWPT system can be modelled as a parity-time-symmetric Su-Schrieffer-Heeger (SSH) chain with complex boundary potentials. Besides, the coil configurations are judiciously designed, which significantly suppress the unwanted cross-couplings between nonadjacent coils that could break the chiral symmetry of the SSH chain. By tuning the inter- and intra-cell coupling strengths, we theoretically and experimentally demonstrate high energy transfer efficiency near the exceptional point of the topological edge states, even in the presence of disorder. The combination of topological metamaterials, non-Hermitian physics, and WPT techniques could promise a variety of robust, efficient WPT applications over long distances in electronics, transportation, and industry.
The rapid development of chargeable devices has caused a great deal of interest in efficient and stable wireless power transfer (WPT) solutions. Most conventional WPT technologies exploit outdated electromagnetic field control methods proposed in the 20th century, wherein some essential parameters are sacrificed in favour of the other ones (efficiency vs. stability), making available WPT systems far from the optimal ones. Over the last few years, the development of novel approaches to electromagnetic field manipulation has enabled many up-and-coming technologies holding great promises for advanced WPT. Examples include coherent perfect absorption, exceptional points in non-Hermitian systems, non-radiating states and anapoles, advanced artificial materials and metastructures. This work overviews the recent achievements in novel physical effects and materials for advanced WPT. We provide a consistent analysis of existing technologies, their pros and cons, and attempt to envision possible perspectives.
Temporal modulation of components of electromagnetic systems provides an exceptional opportunity to engineer the response of those systems in a desired fashion, both in the time and frequency domains. For engineering time-modulated systems, one needs to thoroughly study the basic concepts and understand the salient characteristics of temporal modulation. In this paper, we carefully study physical models of basic bulk circuit elements -- capacitors, inductors, and resistors -- as frequency dispersive and time-varying components and study their effects in the case of periodical time modulations. We develop a solid theory for understanding these elements, and apply it to two important applications: wireless power transfer and antennas. For the first application, we show that by periodically modulating the mutual inductance between the transmitter and receiver, the fundamental limits of classical wireless power transfer systems can be overcome. Regarding the second application, we consider a time-varying source for electrically small dipole antennas and show how time modulation can enhance the antenna performance. The developed theory of electromagnetic systems engineered by temporal modulation is applicable from radio frequencies to optical wavelengths.
147 - Qiao Li , Yifei Wei , Mei Song 2016
An energy cooperation policy for energy harvesting wireless sensor networks (WSNs) with wireless power transfer is proposed in this paper to balance the energy at each sensor node and increase the total energy utilization ratio of the whole WSNs. Considering the unbalanced spatio-temporal properties of the energy supply across the deployment terrain of energy harvesting WSNs and the dynamic traffic load at each sensor node, the energy cooperation problem among sensor nodes is decomposed into two steps: the local energy storage at each sensor node based on its traffic load to meet its own needs; within the energy storage procedure sensor nodes with excess energy transmit a part of their energy to nodes with energy shortage through the energy trading. Inventory theory and game theory are respectively applied to solving the local energy storage problem at each sensor node and the energy trading problem among multiple sensor nodes. Numerical results show that compared with the static energy cooperation method without energy trading, the Stackelberg Model based Game we design in this paper can significantly improve the trading volume of energy thereby increasing the utilization ratio of the harvested energy which is unevenly distributed in the WSNs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا