No Arabic abstract
Temporal modulation of components of electromagnetic systems provides an exceptional opportunity to engineer the response of those systems in a desired fashion, both in the time and frequency domains. For engineering time-modulated systems, one needs to thoroughly study the basic concepts and understand the salient characteristics of temporal modulation. In this paper, we carefully study physical models of basic bulk circuit elements -- capacitors, inductors, and resistors -- as frequency dispersive and time-varying components and study their effects in the case of periodical time modulations. We develop a solid theory for understanding these elements, and apply it to two important applications: wireless power transfer and antennas. For the first application, we show that by periodically modulating the mutual inductance between the transmitter and receiver, the fundamental limits of classical wireless power transfer systems can be overcome. Regarding the second application, we consider a time-varying source for electrically small dipole antennas and show how time modulation can enhance the antenna performance. The developed theory of electromagnetic systems engineered by temporal modulation is applicable from radio frequencies to optical wavelengths.
Recent advances in non-radiative wireless power transfer (WPT) technique essentially relying on magnetic resonance and near-field coupling have successfully enabled a wide range of applications. However, WPT systems based on double resonators are severely limited to short- or mid-range distance, due to the deteriorating efficiency and power with long transfer distance. WPT systems based on multi-relay resonators can overcome this problem, which, however, suffer from sensitivity to perturbations and fabrication imperfections. Here, we experimentally demonstrate a concept of topological wireless power transfer (TWPT), where energy is transferred efficiently via the near-field coupling between two topological edge states localized at the ends of a one-dimensional radiowave topological insulator. Such a TWPT system can be modelled as a parity-time-symmetric Su-Schrieffer-Heeger (SSH) chain with complex boundary potentials. Besides, the coil configurations are judiciously designed, which significantly suppress the unwanted cross-couplings between nonadjacent coils that could break the chiral symmetry of the SSH chain. By tuning the inter- and intra-cell coupling strengths, we theoretically and experimentally demonstrate high energy transfer efficiency near the exceptional point of the topological edge states, even in the presence of disorder. The combination of topological metamaterials, non-Hermitian physics, and WPT techniques could promise a variety of robust, efficient WPT applications over long distances in electronics, transportation, and industry.
The rapid development of chargeable devices has caused a great deal of interest in efficient and stable wireless power transfer (WPT) solutions. Most conventional WPT technologies exploit outdated electromagnetic field control methods proposed in the 20th century, wherein some essential parameters are sacrificed in favour of the other ones (efficiency vs. stability), making available WPT systems far from the optimal ones. Over the last few years, the development of novel approaches to electromagnetic field manipulation has enabled many up-and-coming technologies holding great promises for advanced WPT. Examples include coherent perfect absorption, exceptional points in non-Hermitian systems, non-radiating states and anapoles, advanced artificial materials and metastructures. This work overviews the recent achievements in novel physical effects and materials for advanced WPT. We provide a consistent analysis of existing technologies, their pros and cons, and attempt to envision possible perspectives.
In the Internet of Things, learning is one of most prominent tasks. In this paper, we consider an Internet of Things scenario where federated learning is used with simultaneous transmission of model data and wireless power. We investigate the trade-off between the number of communication rounds and communication round time while harvesting energy to compensate the energy expenditure. We formulate and solve an optimization problem by considering the number of local iterations on devices, the time to transmit-receive the model updates, and to harvest sufficient energy. Numerical results indicate that maximum ratio transmission and zero-forcing beamforming for the optimization of the local iterations on devices substantially boost the test accuracy of the learning task. Moreover, maximum ratio transmission instead of zero-forcing provides the best test accuracy and communication round time trade-off for various energy harvesting percentages. Thus, it is possible to learn a model quickly with few communication rounds without depleting the battery.
While wired-power-transfer devices ensure robust power delivery even if the receiver position or load impedance changes, achieving the robustness of wireless power transfer (WPT) is challenging. Conventional solutions are based on additional control circuits for dynamic tuning. Here, we propose a robust WPT system in which no additional tuning circuitry is required for robust operation. This is achieved by our systematically designing the load and the coupling link to be parts of the feedback circuit. Therefore, the WPT operation is automatically adjusted to the optimal working condition under a wide range of load and receiver positions. In addition, pulsed oscillations instead of single-harmonic oscillation are adopted to increase the overall efficiency. An example system is designed with the use of a capacitive coupling link. It realizes a virtual, nearly-ideal oscillating voltage source at the load site, giving efficient power transfer comparable to that of the ideal wired-connection scenario. We numerically and experimentally verify the robustness of the WPT system under the variations of load and coupling, where coupling is changing by our varying the alignment of aluminum plates. The working frequency and the transferred power agree well with analytical models. The proposed paradigm can have a significant impact on future high-performance WPT devices. The designed system can also work as a smart table supporting multiple receivers with robust and efficient operation.
This paper investigates power splitting for full-duplex relay networks with wireless information and energy transfer. By applying power splitting as a relay transceiver architecture, the full duplex information relaying can be powered by energy harvested from the source-emitted radio frequency signal. In order to minimize outage probability, power splitting ratios have been dynamically optimized according to full channel state information (CSI) and partial CSI, respectively. Under strong loop interference, the proposed full CSI-based and partial CSI-based power splitting schemes achieve the better outage performance than the fixed power splitting scheme, whereas the partial CSI-based power splitting scheme can ensure competitive outage performance without requiring CSI of the second-hop link. It is also observed that the worst outage performance is achieved when the relay is located midway between the source and destination, whereas the outage performance of partial CSI-based power splitting scheme approaches that of full CSI-based scheme when the relay is placed close to the destination.