Do you want to publish a course? Click here

Global 3-group symmetry and t Hooft anomalies in axion electrodynamics

122   0   0.0 ( 0 )
 Added by Ryo Yokokura
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate a higher-group structure of massless axion electrodynamics in $(3+1)$ dimensions. By using the background gauging method, we show that the higher-form symmetries necessarily have a global semistrict 3-group (2-crossed module) structure, and exhibit t Hooft anomalies of the 3-group. In particular, we find a cubic mixed t Hooft anomaly between 0-form and 1-form symmetries, which is specific to the higher-group structure.



rate research

Read More

We study higher-form global symmetries and a higher-group structure of a low-energy limit of $(3+1)$-dimensional axion electrodynamics in a gapped phase described by a topological action. We argue that the higher-form symmetries should have a semi-strict 4-group (3-crossed module) structure by consistency conditions of couplings of the topological action to background gauge fields for the higher-form symmetries. We find possible t Hooft anomalies for the 4-group global symmetry, and discuss physical consequences.
We study higher-form symmetries and a higher group in $(3+1)$-dimensional axion electrodynamics where the axion and photon are massive. A topological field theory describing topological excitations with the axion-photon coupling is obtained in the low energy limit, in which higher-form symmetries are specified. By using intersections of the symmetry generators, we find that the worldvolume of an axionic domain wall is topologically ordered. We further specify the underlying mathematical structure elegantly describing all salient features of the theory to be a 4-group.
We study higher-form symmetries in a low-energy effective theory of a massless axion coupled with a photon in $(3+1)$ dimensions. It is shown that the higher-form symmetries of this system are accompanied by a semistrict 3-group (2-crossed module) structure, which can be found by the correlation functions of symmetry generators of the higher-form symmetries. We argue that the Witten effect and anomalous Hall effect in the axion electrodynamics can be described in terms of 3-group transformations.
We study the mixed anomaly between the discrete chiral symmetry and general baryon-color-flavor (BCF) backgrounds in $SU(N_c)$ gauge theories with $N_f$ flavors of Dirac fermions in representations ${cal R}_c$ of $N$-ality $n_c$, formulated on non-spin manifolds. We show how to study these theories on $mathbb{CP}^2$ by turning on general BCF fluxes consistent with the fermion transition functions. We consider several examples in detail and argue that matching the anomaly on non-spin manifolds places stronger constraints on the infrared physics, compared to the ones on spin manifolds (e.g.~$mathbb{T}^4$). We also show how to consistently formulate various chiral gauge theories on non-spin manifolds.
184 - Daniel Kapec , Raghu Mahajan , 2019
The Hilbert space of a quantum system with internal global symmetry $G$ decomposes into sectors labelled by irreducible representations of $G$. If the system is chaotic, the energies in each sector should separately resemble ordinary random matrix theory. We show that such sector-wise random matrix ensembles arise as the boundary dual of two-dimensional gravity with a $G$ gauge field in the bulk. Within each sector, the eigenvalue density is enhanced by a nontrivial factor of the dimension of the representation, and the ground state energy is determined by the quadratic Casimir. We study the consequences of t Hooft anomalies in the matrix ensembles, which are incorporated by adding specific topological terms to the gauge theory action. The effect is to introduce projective representations into the decomposition of the Hilbert space. Finally, we consider ensembles with $G$ symmetry and time reversal symmetry, and analyze a simple case of a mixed anomaly between time reversal and an internal $mathbb{Z}_2$ symmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا