No Arabic abstract
Numerical software in computational science and engineering often relies on highly-optimized building blocks from libraries such as BLAS and LAPACK, and while such libraries provide portable performance for a wide range of computing architectures, they still present limitations in terms of flexibility. We advocate a domain-specific program generator capable of producing library routines tailored to the specific needs of the application in terms of sizes, interface, and target architecture.
The level of abstraction at which application experts reason about linear algebra computations and the level of abstraction used by developers of high-performance numerical linear algebra libraries do not match. The former is conveniently captured by high-level languages and libraries such as Matlab and Eigen, while the latter expresses the kernels included in the BLAS and LAPACK libraries. Unfortunately, the translation from a high-level computation to an efficient sequence of kernels is a task, far from trivial, that requires extensive knowledge of both linear algebra and high-performance computing. Internally, almost all high-level languages and libraries use efficient kernels; however, the translation algorithms are too simplistic and thus lead to a suboptimal use of said kernels, with significant performance losses. In order to both achieve the productivity that comes with high-level languages, and make use of the efficiency of low level kernels, we are developing Linnea, a code generator for linear algebra problems. As input, Linnea takes a high-level description of a linear algebra problem and produces as output an efficient sequence of calls to high-performance kernels. In 25 application problems, the code generated by Linnea always outperforms Matlab, Julia, Eigen and Armadillo, with speedups up to and exceeding 10x.
We present SLinGen, a program generation system for linear algebra. The input to SLinGen is an application expressed mathematically in a linear-algebra-inspired language (LA) that we define. LA provides basic scalar/vector/matrix additions/multiplications and higher level operations including linear systems solvers, Cholesky and LU factorizations. The output of SLinGen is performance-optimized single-source C code, optionally vectorized with intrinsics. The target of SLinGen are small-scale computations on fixed-size operands, for which a straightforward implementation using optimized libraries (e.g., BLAS or LAPACK) is known to yield suboptimal performance (besides increasing code size and introducing dependencies), but which are crucial in control, signal processing, computer vision, and other domains. Internally, SLinGen uses synthesis and DSL-based techniques to optimize at a high level of abstraction. We benchmark our program generator on three prototypical applications: the Kalman filter, Gaussian process regression, and an L1-analysis convex solver, as well as basic routines including Cholesky factorization and solvers for the continuous-time Lyapunov and Sylvester equations. The results show significant speed-ups compared to straightforward C with Intel icc and clang with a polyhedral optimizer, as well as library-based and template-based implementations.
BLASFEO is a dense linear algebra library providing high-performance implementations of BLAS- and LAPACK-like routines for use in embedded optimization. A key difference with respect to existing high-performance implementations of BLAS is that the computational performance is optimized for small to medium scale matrices, i.e., for sizes up to a few hundred. BLASFEO comes with three different implementations: a high-performance implementation aiming at providing the highest performance for matrices fitting in cache, a reference implementation providing portability and embeddability and optimized for very small matrices, and a wrapper to standard BLAS and LAPACK providing high-performance on large matrices. The three implementations of BLASFEO together provide high-performance dense linear algebra routines for matrices ranging from very small to large. Compared to both open-source and proprietary highly-tuned BLAS libraries, for matrices of size up to about one hundred the high-performance implementation of BLASFEO is about 20-30% faster than the corresponding level 3 BLAS routines and 2-3 times faster than the corresponding LAPACK routines.
In this work, we present the M4RIE library which implements efficient algorithms for linear algebra with dense matrices over GF(2^e) for 2 <= 2 <= 10. As the name of the library indicates, it makes heavy use of the M4RI library both directly (i.e., by calling it) and indirectly (i.e., by using its concepts). We provide an open-source GPLv2+ C library for efficient linear algebra over GF(2^e) for e small. In this library we implemented an idea due to Bradshaw and Boothby which reduces matrix multiplication over GF(p^k) to a series of matrix multiplications over GF(p). Furthermore, we propose a caching technique - Newton-John tables - to avoid finite field multiplications which is inspired by Kronrods method (M4RM) for matrix multiplication over GF(2). Using these two techniques we provide asymptotically fast triangular solving with matrices (TRSM) and PLE-based Gaussian elimination. As a result, we are able to significantly improve upon the state of the art in dense linear algebra over GF(2^e) with 2 <= e <= 10.
Graph algorithms can be expressed in terms of linear algebra. GraphBLAS is a library of low-level building blocks for such algorithms that targets algorithm developers. LAGraph builds on top of the GraphBLAS to target users of graph algorithms with high-level algorithms common in network analysis. In this paper, we describe the first release of the LAGraph library, the design decisions behind the library, and performance using the GAP benchmark suite. LAGraph, however, is much more than a library. It is also a project to document and analyze the full range of algorithms enabled by the GraphBLAS. To that end, we have developed a compact and intuitive notation for describing these algorithms. In this paper, we present that notation with examples from the GAP benchmark suite.