Do you want to publish a course? Click here

The Fornax3D project: Tracing the assembly history of the cluster from the kinematic and line-strength maps

80   0   0.0 ( 0 )
 Added by Enrichetta Iodice
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 31 brightest galaxies (m_B < 15 mag) inside the virial radius of the Fornax cluster were observed from the centres to the outskirts with the Multi Unit Spectroscopic Explorer on the Very Large Telescope. These observations provide detailed high-resolution maps of the line-of-sight kinematics and line strengths of the stars and ionised gas reaching 2-3 Re for 21 early-type galaxies and 1-2 Re for 10 late-type galaxies. The majority of the galaxies are regular rotators, with eight hosting a kinematically distinct core. Only two galaxies are slow rotators. The mean age, total metallicity, and [Mg/Fe] abundance ratio in the bright central region inside 0.5 Re and in the galaxy outskirts are presented. Extended emission-line gas is detected in 13 galaxies, most of them are late-type objects with wide-spread star formation. The measured structural properties are analysed in relation to the galaxies position in the projected phase space of the cluster. This shows that the Fornax cluster appears to consist of three main groups of galaxies inside the virial radius: the old core; a clump of galaxies, which is aligned with the local large-scale structure and was accreted soon after the formation of the core; and a group of galaxies that fell in more recently.

rate research

Read More

Abridged for arXiv: In this work, we apply a powerful new technique in order to observationally derive accurate assembly histories through a self-consistent combined stellar dynamical and population galaxy model. We present this approach for three edge-on lenticular galaxies from the Fornax3D project -- FCC 153, FCC 170, and FCC 177 -- in order to infer their mass assembly histories individually and in the context of the Fornax cluster. The method was tested on mock data from simulations to quantify its reliability. We find that the galaxies studied here have all been able to form dynamically-cold (intrinsic vertical velocity dispersion $sigma_z lesssim 50 {rm km} {rm s}^{-1}$) stellar disks after cluster infall. Moreover, the pre-existing (old) high angular momentum components have retained their angular momentum (orbital circularity $lambda_z > 0.8$) through to the present day. Comparing the derived assembly histories with a comparable galaxy in a low-density environment -- NGC 3115 -- we find evidence for cluster-driven suppression of stellar accretion and merging. We measured the intrinsic stellar age--velocity-dispersion relation and find that the shape of the relation is consistent with galaxies in the literature across redshift. There is tentative evidence for enhancement in the luminosity-weighted intrinsic vertical velocity dispersion due to the cluster environment. But importantly, there is an indication that metallicity may be a key driver of this relation. We finally speculate that the cluster environment is responsible for the S0 morphology of these galaxies via the gradual external perturbations, or `harassment, generated within the cluster.
(Abridged) We present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of Hbeta, Fe5015, and Mgb, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [alpha/Fe] over a two-dimensional field extending up to approximately one effective radius. We find a large range of SSP-equivalent ages in our sample, of which ~40% of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of <=3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star-formation, are restricted to low mass systems(sigma_e <= 100 k/ms or ~2x10^10 M_sol). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star-formation in a thin, dusty disk/ring, also seen in the near-UV or mid-IR. The flattened components with disk-like kinematics previously identified in all fast rotators (Krajnovic et al.) are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear disks and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disk-like kinematics, which are observed to have an increased metallicity and mildly depressed [alpha/Fe] ratio compared to the main body of the galaxy. The slow rotators generally show no stellar population signatures over and above the well known metallicity gradients and are largely consistent with old (>=10 Gyr) stellar populations.
Extragalactic planetary nebulae (PNe) offer a way to determine the distance to their host galaxies thanks to the nearly universal shape of the planetary nebulae luminosity function (PNLF). Accurate PNe distance measurements rely on obtaining well-sampled PNLFs and the number of observed PNe scales with the encompassed stellar mass. This means either disposing of wide-field observations or focusing on the bright central regions of galaxies. In this work we take this second approach and conduct a census of the PNe population in the central regions of galaxies in the Fornax cluster, using VLT/MUSE data for the early-type galaxies observed over the course of the Fornax3D survey. Using such integral-field spectroscopic observations to carefully separate the nebular emission from the stellar continuum, we isolated [OIII] 5007 {AA} sources of interest, filtered out unresolved impostor sources or kinematic outliers, and present a catalogue of 1350 unique PNe sources across 21 early-type galaxies, which includes their positions, [OIII] 5007 {AA} line magnitudes, and line-of-sight velocities. Using the PNe catalogued within each galaxy, we present independently derived distance estimates based on the fit to the entire observed PNLF observed while carefully accounting for the PNe detection incompleteness. With these individual measurements, we arrive at an average distance to the Fornax cluster itself of 19.86 $pm$ 0.32 Mpc ($mu_{PNLF}$ = 31.49 $pm$ 0.04 mag). Our PNLF distance measurements agree well with previous distances based on surface brightness fluctuations, finding no significant systematic offsets between the two methods as otherwise reported in previous studies.
We present absorption line strength maps of 48 representative elliptical and lenticular galaxies obtained as part of the SAURON survey of nearby galaxies. Using high-quality spectra, spatially binned to a constant signal-to-noise, we measure four key age, metallicity and abundance ratio sensitive indices from the Lick/IDS system over a two-dimensional field extending up to approximately one effective radius. We modify the classical Fe5270 index to define a new index, Fe5270S, which maximizes the usable spatial coverage of SAURON. Maps of Hbeta, Fe5015, Mgb and Fe5270S are presented for each galaxy. We use the maps to compute average line strengths integrated over circular apertures of one-eighth effective radius, and compare the resulting relations of index versus velocity dispersion with previous long-slit work. The metal line strength maps show generally negative gradients with increasing radius roughly consistent with the morphology of the light profiles. Remarkable deviations from this general trend exist, particularly the Mgb isoindex contours appear to be flatter than the isophotes of the surface brightness for about 40% of our galaxies without significant dust features. Generally these galaxies exhibit significant rotation. We infer from this that the fast-rotating component features a higher metallicity and/or an increased Mg/Fe ratio as compared to the galaxy as a whole. The Hbeta maps are typically flat or show a mild positive outwards radial gradient, while a few galaxies show strong central peaks and/or elevated overall Hbeta-strength likely connected to recent star-formation activity. For the most prominent post-starburst galaxies even the metal line strength maps show a reversed gradient. (abridged)
We present 25 cosmological zoom-in simulations of Milky Way-mass galaxies in the `MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS couples a detailed physical model for the formation, evolution, and disruption of star clusters to the EAGLE galaxy formation simulations. This enables following the co-formation and co-evolution of galaxies and their star cluster populations, thus realising the long-standing promise of using globular clusters (GCs) as tracers of galaxy formation and assembly. The simulations show that the age-metallicity distributions of GC populations exhibit strong galaxy-to-galaxy variations, resulting from differences in their evolutionary histories. We develop a formalism for systematically constraining the assembly histories of galaxies using GC age-metallicity distributions. These distributions are characterised through 13 metrics that we correlate with 30 quantities describing galaxy formation and assembly (e.g. halo properties, formation/assembly redshifts, stellar mass assembly time-scales, galaxy merger statistics), resulting in 20 statistically (highly) significant correlations. The GC age-metallicity distribution is a sensitive probe of the mass growth, metal enrichment, and minor merger history of the host galaxy. No such relation is found between GCs and major mergers, which play a sub-dominant role in GC formation for Milky Way-mass galaxies. Finally, we show how the GC age-metallicity distribution enables the reconstruction of the host galaxys merger tree, allowing us to identify all progenitors with masses $M_*gtrsim10^8$ M$_odot$ for redshifts $1leq zleq2.5$. These results demonstrate that cosmological simulations of the co-formation and co-evolution of GCs and their host galaxies successfully unlock the potential of GCs as quantitative tracers of galaxy formation and assembly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا