No Arabic abstract
Random forests is a common non-parametric regression technique which performs well for mixed-type unordered data and irrelevant features, while being robust to monotonic variable transformations. Standard random forests, however, do not efficiently handle functional data and runs into a curse-of dimensionality when presented with high-resolution curves and surfaces. Furthermore, in settings with heteroskedasticity or multimodality, a regression point estimate with standard errors do not fully capture the uncertainty in our predictions. A more informative quantity is the conditional density p(y | x) which describes the full extent of the uncertainty in the response y given covariates x. In this paper we show how random forests can be efficiently leveraged for conditional density estimation, functional covariates, and multiple responses without increasing computational complexity. We provide open-source software for all procedures with R and Pyth
Random forests is a common non-parametric regression technique which performs well for mixed-type data and irrelevant covariates, while being robust to monotonic variable transformations. Existing random forest implementations target regression or classification. We introduce the RFCDE package for fitting random forest models optimized for nonparametric conditional density estimation, including joint densities for multiple responses. This enables analysis of conditional probability distributions which is useful for propagating uncertainty and of joint distributions that describe relationships between multiple responses and covariates. RFCDE is released under the MIT open-source license and can be accessed at https://github.com/tpospisi/rfcde . Both R and Pyth
We present and describe the GPFDA package for R. The package provides flexible functionalities for dealing with Gaussian process regression (GPR) models for functional data. Multivariate functional data, functional data with multidimensional inputs, and nonseparable and/or nonstationary covariance structures can be modeled. In addition, the package fits functional regression models where the mean function depends on scalar and/or functional covariates and the covariance structure is modeled by a GPR model. In this paper, we present the versatility of GPFDA with respect to mean function and covariance function specifications and illustrate the implementation of estimation and prediction of some models through reproducible numerical examples.
We present $textbf{PyRMLE}$, a Python module that implements Regularized Maximum Likelihood Estimation for the analysis of Random Coefficient models. $textbf{PyRMLE}$ is simple to use and readily works with data formats that are typical to Random Coefficient problems. The module makes use of Pythons scientific libraries $textbf{NumPy}$ and $textbf{SciPy}$ for computational efficiency. The main implementation of the algorithm is executed purely in Python code which takes advantage of Pythons high-level features.
Bayes classifiers for functional data pose a challenge. This is because probability density functions do not exist for functional data. As a consequence, the classical Bayes classifier using density quotients needs to be modified. We propose to use density ratios of projections on a sequence of eigenfunctions that are common to the groups to be classified. The density ratios can then be factored into density ratios of individual functional principal components whence the classification problem is reduced to a sequence of nonparametric one-dimensional density estimates. This is an extension to functional data of some of the very earliest nonparametric Bayes classifiers that were based on simple density ratios in the one-dimensional case. By means of the factorization of the density quotients the curse of dimensionality that would otherwise severely affect Bayes classifiers for functional data can be avoided. We demonstrate that in the case of Gaussian functional data, the proposed functional Bayes classifier reduces to a functional version of the classical quadratic discriminant. A study of the asymptotic behavior of the proposed classifiers in the large sample limit shows that under certain conditions the misclassification rate converges to zero, a phenomenon that has been referred to as perfect classification. The proposed classifiers also perform favorably in finite sample applications, as we demonstrate in comparisons with other functional classifiers in simulations and various data applications, including wine spectral data, functional magnetic resonance imaging (fMRI) data for attention deficit hyperactivity disorder (ADHD) patients, and yeast gene expression data.
For Bayesian computation in big data contexts, the divide-and-conquer MCMC concept splits the whole data set into batches, runs MCMC algorithms separately over each batch to produce samples of parameters, and combines them to produce an approximation of the target distribution. In this article, we embed random forests into this framework and use each subposterior/partial-posterior as a proposal distribution to implement importance sampling. Unlike the existing divide-and-conquer MCMC, our methods are based on scaled subposteriors, whose scale factors are not necessarily restricted to being equal to one or to the number of subsets. Through several experiments, we show that our methods work well with models ranging from Gaussian cases to strongly non-Gaussian cases, and include model misspecification.