Do you want to publish a course? Click here

An Interactive Multi-Task Learning Network for End-to-End Aspect-Based Sentiment Analysis

344   0   0.0 ( 0 )
 Added by Ruidan He
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Aspect-based sentiment analysis produces a list of aspect terms and their corresponding sentiments for a natural language sentence. This task is usually done in a pipeline manner, with aspect term extraction performed first, followed by sentiment predictions toward the extracted aspect terms. While easier to develop, such an approach does not fully exploit joint information from the two subtasks and does not use all available sources of training information that might be helpful, such as document-level labeled sentiment corpus. In this paper, we propose an interactive multi-task learning network (IMN) which is able to jointly learn multiple related tasks simultaneously at both the token level as well as the document level. Unlike conventional multi-task learning methods that rely on learning common features for the different tasks, IMN introduces a message passing architecture where information is iteratively passed to different tasks through a shared set of latent variables. Experimental results demonstrate superior performance of the proposed method against multiple baselines on three benchmark datasets.

rate research

Read More

The aspect-based sentiment analysis (ABSA) task remains to be a long-standing challenge, which aims to extract the aspect term and then identify its sentiment orientation.In previous approaches, the explicit syntactic structure of a sentence, which reflects the syntax properties of natural language and hence is intuitively crucial for aspect term extraction and sentiment recognition, is typically neglected or insufficiently modeled. In this paper, we thus propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA. This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn). Additionally, we design a simple yet effective message-passing mechanism to ensure that our model learns from multiple related tasks in a multi-task learning framework. Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach, which significantly outperforms existing state-of-the-art methods. Besides, we achieve further improvements by using BERT as an additional feature extractor.
In this work, we propose a new model for aspect-based sentiment analysis. In contrast to previous approaches, we jointly model the detection of aspects and the classification of their polarity in an end-to-end trainable neural network. We conduct experiments with different neural architectures and word representations on the recent GermEval 2017 dataset. We were able to show considerable performance gains by using the joint modeling approach in all settings compared to pipeline approaches. The combination of a convolutional neural network and fasttext embeddings outperformed the best submission of the shared task in 2017, establishing a new state of the art.
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches do not well exploit the interactive relations among three subtasks and do not pertinently leverage the easily available document-level labeled domain/sentiment knowledge, which restricts their performances. To address these issues, we propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing, through the interactive correlations between the ABSA subtasks, our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm, that is, any two of the three subtasks will help the third one. For another, our IMKTN pertinently transfers the document-level knowledge, i.e., domain-specific and sentiment-related knowledge, to the aspect-level subtasks to further enhance the corresponding performance. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.
Aspect-based sentiment analysis (ABSA) aims at analyzing the sentiment of a given aspect in a sentence. Recently, neural network-based methods have achieved promising results in existing ABSA datasets. However, these datasets tend to degenerate to sentence-level sentiment analysis because most sentences contain only one aspect or multiple aspects with the same sentiment polarity. To facilitate the research of ABSA, NLPCC 2020 Shared Task 2 releases a new large-scale Multi-Aspect Multi-Sentiment (MAMS) dataset. In the MAMS dataset, each sentence contains at least two different aspects with different sentiment polarities, which makes ABSA more complex and challenging. To address the challenging dataset, we re-formalize ABSA as a problem of multi-aspect sentiment analysis, and propose a novel Transformer-based Multi-aspect Modeling scheme (TMM), which can capture potential relations between multiple aspects and simultaneously detect the sentiment of all aspects in a sentence. Experiment results on the MAMS dataset show that our method achieves noticeable improvements compared with strong baselines such as BERT and RoBERTa, and finally ranks the 2nd in NLPCC 2020 Shared Task 2 Evaluation.
Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between variable-length input and output sequences in one step using a purely data-driven method. The attention model has often been shown to improve the performance over another end-to-end approach, the Connectionist Temporal Classification (CTC), mainly because it explicitly uses the history of the target character without any conditional independence assumptions. However, we observed that the performance of the attention has shown poor results in noisy condition and is hard to learn in the initial training stage with long input sequences. This is because the attention model is too flexible to predict proper alignments in such cases due to the lack of left-to-right constraints as used in CTC. This paper presents a novel method for end-to-end speech recognition to improve robustness and achieve fast convergence by using a joint CTC-attention model within the multi-task learning framework, thereby mitigating the alignment issue. An experiment on the WSJ and CHiME-4 tasks demonstrates its advantages over both the CTC and attention-based encoder-decoder baselines, showing 5.4-14.6% relative improvements in Character Error Rate (CER).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا