Do you want to publish a course? Click here

Sparsity Invariance for Convex Design of Distributed Controllers

95   0   0.0 ( 0 )
 Added by Luca Furieri
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We address the problem of designing optimal linear time-invariant (LTI) sparse controllers for LTI systems, which corresponds to minimizing a norm of the closed-loop system subject to sparsity constraints on the controller structure. This problem is NP-hard in general and motivates the development of tractable approximations. We characterize a class of convex restrictions based on a new notion of Sparsity Invariance (SI). The underlying idea of SI is to design sparsity patterns for transfer matrices Y(s) and X(s) such that any corresponding controller K(s)=Y(s)X(s)^-1 exhibits the desired sparsity pattern. For sparsity constraints, the approach of SI goes beyond the notion of Quadratic Invariance (QI): 1) the SI approach always yields a convex restriction; 2) the solution via the SI approach is guaranteed to be globally optimal when QI holds and performs at least as well as considering a nearest QI subset. Moreover, the notion of SI naturally applies to designing structured static controllers, while QI is not utilizable. Numerical examples show that even for non-QI cases, SI can recover solutions that are 1) globally optimal and 2) strictly more performing than previous methods.



rate research

Read More

We consider the problem of designing a stabilizing and optimal static controller with a pre-specified sparsity pattern. Since this problem is NP-hard in general, it is necessary to resort to approximation approaches. In this paper, we characterize a class of convex restrictions of this problem that are based on designing a separable quadratic Lyapunov function for the closed-loop system. This approach generalizes previous results based on optimizing over diagonal Lyapunov functions, thus allowing for improved feasibility and performance. Moreover, we suggest a simple procedure to compute favourable structures for the Lyapunov function yielding high-performance distributed controllers. Numerical examples validate our results.
An important issue in todays electricity markets is the management of flexibilities offered by new practices, such as smart home appliances or electric vehicles. By inducing changes in the behavior of residential electric utilities, demand response (DR) seeks to adjust the demand of power to the supply for increased grid stability and better integration of renewable energies. A key role in DR is played by emergent independent entities called load aggregators (LAs). We develop a new decentralized algorithm to solve a convex relaxation of the classical Alternative Current Optimal Power Flow (ACOPF) problem, which relies on local information only. Each computational step can be performed in an entirely privacy-preserving manner, and system-wide coordination is achieved via node-specific distribution locational marginal prices (DLMPs). We demonstrate the efficiency of our approach on a 15-bus radial distribution network.
256 - Yujie Li , Sikai Chen , Runjia Du 2020
Emerging transportation technologies offer unprecedented opportunities to improve the efficiency of the transportation system from the perspectives of energy consumption, congestion, and emissions. One of these technologies is connected and autonomous vehicles (CAVs). With the prospective duality of operations of CAVs and human driven vehicles in the same roadway space (also referred to as a mixed stream), CAVs are expected to address a variety of traffic problems particularly those that are either caused or exacerbated by the heterogeneous nature of human driving. In efforts to realize such specific benefits of CAVs in mixed-stream traffic, it is essential to understand and simulate the behavior of human drivers in such environments, and microscopic traffic flow (MTF) models can be used to carry out this task. By helping to comprehend the fundamental dynamics of traffic flow, MTF models serve as a powerful approach to assess the impacts of such flow in terms of safety, stability, and efficiency. In this paper, we seek to calibrate MTF models based on empirical trajectory data as basis of not only understanding traffic dynamics such as traffic instabilities, but ultimately using CAVs to mitigate stop-and-go wave propagation. The paper therefore duly considers the heterogeneity and uncertainty associated with human driving behavior in order to calibrate the dynamics of each HDV. Also, the paper designs the CAV controllers based on the microscopic HDV models that are calibrated in real time. The data for the calibration is from the Next Generation SIMulation (NGSIM) trajectory datasets. The results are encouraging, as they indicate the efficacy of the designed controller to significantly improve not only the stability of the mixed traffic stream but also the safety of both CAVs and HDVs in the traffic stream.
Adaptive model predictive control (MPC) robustly ensures safety while reducing uncertainty during operation. In this paper, a distributed version is proposed to deal with network systems featuring multiple agents and limited communication. To solve the problem in a distributed manner, structure is imposed on the control design ingredients without sacrificing performance. Decentralized and distributed adaptation schemes that allow for a reduction of the uncertainty online compatibly with the network topology are also proposed. The algorithm ensures robust constraint satisfaction, recursive feasibility and finite gain $ell_2$ stability, and yields lower closed-loop cost compared to robust distributed MPC in simulations.
In this paper, we present an approach for designing feedback controllers for polynomial systems that maximize the size of the time-limited backwards reachable set (BRS). We rely on the notion of occupation measures to pose the synthesis problem as an infinite dimensional linear program (LP) and provide finite dimensional approximations of this LP in terms of semidefinite programs (SDPs). The solution to each SDP yields a polynomial control policy and an outer approximation of the largest achievable BRS. In contrast to traditional Lyapunov based approaches which are non-convex and require feasible initialization, our approach is convex and does not require any form of initialization. The resulting time-varying controllers and approximated reachable sets are well-suited for use in a trajectory library or feedback motion planning algorithm. We demonstrate the efficacy and scalability of our approach on five nonlinear systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا