Do you want to publish a course? Click here

Polytetrahedral short-range order and crystallization stability in supercooled ${rm Cu_{64.5}Zr_{35.5}}$ metallic liquid

104   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Development of reliable interatomic potentials is crucial for theoretical studies of relationship between chemical composition, structure and observable properties in glass-forming metallic alloys. Due to ambiguity of potential parametrization procedure, some crucial properties of the system, such as crystallization stability or symmetry of the ground state crystal phase, may not be correctly reproduced in computer simulations. Here we address this issue for ${rm Cu_{64.5}Zr_{35.5}}$ alloy described by two modifications of embedded atom model potential as well as by textit{ab initio} molecular dynamics. We observe that, at low supercooling, both models provide very similar liquid structure, which agrees with that obtained by textit{ab initio} simulations. Hoverer, deeply supercooled liquids demonstrate essentially different local structure and so different crystallization stability. The system, which demonstrate more pronounced icosahedral sort-range order, is more stable to crystallization that is in agreement with Frank hypothesis.



rate research

Read More

Below the melting temperature $T_m$ crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below $T_m$, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature $T_g$. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO$_2$ in the deep supercooled liquid at 1100 K, about half-way between $T_m$ and $T_g$. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as blocking barrier.
A novel liquid-liquid phase transition has been proposed and investigated in a wide variety of pure substances recently, including water, silica and silicon. From computer simulations using the Stillinger-Weber classical empirical potential, Sastry and Angell [1] demonstrated a first order liquid-liquid transition in supercooled silicon, subsequently supported by experimental and simulation studies. Here, we report evidence for a liquid-liquid critical end point at negative pressures, from computer simulations using the SW potential. Compressibilities exhibit a growing maximum upon lowering temperature below 1500 K and isotherms exhibit density discontinuities below 1120 K, at negative pressure. Below 1120 K, isotherms obtained from constant volume-temperature simulations exhibit non-monotonic, van der Waals-like behavior signaling a first order transition. We identify Tc ~ 1120 +/- 12 K, Pc -0.60 +/- 0.15 GPa as the critical temperature and pressure for the liquid-liquid critical point. The structure of the liquid changes dramatically upon decreasing the temperature and pressure. Diffusivities vary over 4 orders of magnitude, and exhibit anomalous pressure dependence near the critical point. A strong relationship between local geometry quantified by the coordination number, and diffusivity, is seen, suggesting that atomic mobility in both low and high density liquids can usefully be analyzed in terms of defects in the tetrahedral network structure. We have constructed the phase diagram of supercooled silicon. We identify the lines of compressibility, density extrema (maxima and minima) and the spinodal which reveal the interconnection between thermodynamic anomalies and the phase behaviour of the system as suggested in previous works [2-9]
Polyvalent metal melts (gallium, tin, bismuth, etc.) have microscopic structural features, which are detected by neutron and X-ray diffraction and which are absent in simple liquids. Based on neutron and X-ray diffraction data and results of textit{ab initio} molecular dynamics simulations for liquid gallium, we examine the structure of this liquid metal at atomistic level. Time-resolved cluster analysis allows one to reveal that the short-range structural order in liquid gallium is determined by a range of the correlation lengths. This analysis performed over set of independent samples corresponding to equilibrium liquid phase discloses that there are no stable crystalline domains as well as molecule-like Ga$_2$ dimers typical for crystal phases of gallium. Structure of liquid gallium can be reproduced by the simplified model of the close-packed system of soft quasi-spheres. The results can be applied to analyze the fine structure of other polyvalent liquid metals.
Freezing is a fundamental physical phenomenon that has been studied over many decades; yet the role played by surfaces in determining nucleation has remained elusive. Here we report direct computational evidence of surface induced nucleation in supercooled systems with a negative slope of their melting line (dP/dT < 0). This unexpected result is related to the density decrease occurring upon crystallization, and to surface tension facilitating the initial nucleus formation. Our findings support the hypothesis of surface induced crystallization of ice in the atmosphere, and provide insight, at the atomistic level, into nucleation mechanisms of widely used semiconductors.
73 - Behrouz Behdani 2021
This study focuses on comparing the individual polymer chain dynamics in an entangled polymeric liquid under different shear and extension rates. Polymer chains under various shear rates and extension rates were simulated using a stochastic-tube model [J. Rheol. 56: 1057 (2012)]. We developed a Matlab code to visualize and analyze the simulated configurations from the stochastic-tube model. We introduced new variables to determine how the extent of linearity changes with time for different shear rates, which is more useful than a typical end-to-end distance analysis. We identified whether the polymer chains undergo a tumbling rotation (slight elongation not accompanying contraction) or flipping rotation (elongation accompanying contraction). The simulation results indicate that the polymer chains exhibit a significant tendency to elongate at higher shear rates and occasionally experience flipping, while lower shear rates tend to exhibit very frequent tumbling. Furthermore, no rotations were observed under extensional flows. These results help clarifying uncertainty of previously proposed polymer deformation mechanisms of the convective constraint release and the configuration-dependent friction coefficient.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا